你们的每个赞都能让我开心好几天✿✿ヽ(°▽°)ノ✿
在networkx中的邻接矩阵有两类(不是指数学意义上的)。数学意义上的无向图的邻接矩阵必定是对称矩阵,因此在networkx里只要给出上三角的即可,或者用元组表示
三种邻接矩阵
a=np.zeros((5,5))#第一种
a[0,1:]=[9,2,4,7]
a[1,2:4]=[3,4]
a[2,3:]=[8,4]
a[3,4]=6
print(a)
b=[(1,2,9),(1,3,2),(1,4,4),(1,5,7),(2,3,3),(2,4,4),(3,4,8),(3,5,4),(4,5,6)]#第二种
c=np.array([[0,9,2,4,7],#数学意义
[9,0,3,4,0],
[2,3,0,8,4],
[4,4,8,0,6],
[7,0,4,6,0]])
以下是两种方法的示例
注意:
(1)第一类邻接矩阵给出上三角即可,在调用时候只需要A=nx.Graph(a)
(2)第二类邻接矩阵是用元组表示的,第一个元素表示行,第二个元素表示列,第三个元素表示权重(下标从0或者1开始都行),若权重为0该元组不用写上去。在调用的时候不能B=nx.Graph(b)而要
B=nx.Graph()
B.add_nodes_from(range(1,6))
B.add_weighted_edges_from(b)
(3)比较无语的是,如果用元组形式的邻接矩阵,无法改变顶点标签,如果非得想改变标签,用A=nx.to_numpy_matrix(G1)导出邻接矩阵,然后再创建一个图G2=nx.Graph(A)
#分为两类,一类是上三角的邻接矩阵,一类是元组表示的邻接矩阵
#以例10.2为例子
import numpy as np
import networkx as nx
import pylab as plt
a=np.zeros((5,5))#第一种
a[0,1:]=[9,2,4,7]
a[1,2:4]=[3,4]
a[2,3:]=[8,4]
a[3,4]=6
print(a)
b=[(1,2,9),(1,3,2),(1,4,4),(1,5,7),(2,3,3),(2,4,4),(3,4,8),(3,5,4),(4,5,6)]#第二种
c=np.array([[0,9,2,4,7],#数学意义
[9,0,3,4,0],
[2,3,0,8,4],
[4,4,8,0,6],
[7,0,4,6,0]])
key=range(5);s=[str(i+1) for i in range(5)]
s=dict(zip(key,s))#用于标号的字典
#第一种邻接矩阵
A=nx.Graph(a)
pos=nx.shell_layout(A)#布局设置
plt.subplot(1,2,1)
w=nx.get_edge_attributes(A,'weight')
nx.draw(A,pos,node_color='pink',labels=s)
nx.draw_networkx_edge_labels(A,pos,edge_labels=w)
#第二种邻接矩阵
B=nx.Graph()
B.add_nodes_from(range(1,6))
B.add_weighted_edges_from(b)
pos=nx.shell_layout(B)
plt.subplot(1,2,2)
w=nx.get_edge_attributes(B,'weight')
nx.draw(B,pos,node_color='pink',with_labels=True)
nx.draw_networkx_edge_labels(B,pos,edge_labels=w)
plt.show()
可以看出画图的结果是一致的
你们的每个赞都能让我开心好几天✿✿ヽ(°▽°)ノ✿