目标检测算法——图像分割数据集汇总 2(附下载链接)

>>>深度学习Tricks,第一时间送达<<<

🎄🎄近期,小海带在空闲之余,收集整理了一批图像分割数据集供大家参考。 整理不易,小伙伴们记得一键三连喔!!!🎈🎈

目录

一、鸟类昆虫数据集 🎄🎈

二、CAD-120 affordance数据集 🎄🎈

三、Intrinsic Images in the Wild 🎄🎈

四、多品种果花检测数据集 🎄🎈

五、OpenSurfaces数据集 🎄🎈

六、阴影检测/纹理分析数据集 🎄🎈

关于YOLO算法改进及论文投稿可关注并留言博主的CSDN/QQ

>>>一起交流!互相学习!共同进步!<<<


一、鸟类昆虫数据集 🎄🎈

数据集下载链接:http://suo.nz/22pJs7

这些数据库由 280 张具有ground truth的鸟类和昆虫的公共图像组成。

二、CAD-120 affordance数据集 🎄🎈

数据集下载链接:http://suo.nz/1NnlU1

包含9916个对象实例的3090幅图像的逐像素注释。

三、Intrinsic Images in the Wild 🎄🎈

数据集下载链接:http://suo.nz/1UTwnq

“Intrinsic Images in the Wild”,这是一个用于评估室内场景固有图像分解的大规模公共数据集。作者们通过数百万个众包注释创建了这个基准,这些注释对每个场景中的点对的材料属性进行了相对比较。

四、多品种果花检测数据集 🎄🎈

数据集下载链接:http://suo.nz/29RKnM

该数据集包含四组花卉图像,来自三种不同的树种:苹果、桃和梨,以及随附的地面实况图像。

五、OpenSurfaces数据集 🎄🎈

数据集下载链接:http://suo.nz/1bI3Md

包含从消费者内部照片中分割出来的数千个表面示例,并使用材料参数(反射率、材料名称)、纹理信息(表面法线、校正纹理)进行注释和上下文信息(场景类别和对象名称)。

六、阴影检测/纹理分析数据集 🎄🎈

数据集下载链接:http://suo.nz/1iyjoA

一个用于阴影检测和纹理分析的简单计算机视觉数据集,专门用于帮助测试移动机器人的阴影检测算法(和纹理分割算法)——即使用 活动(移动)相机进行阴影检测。

该数据集专注于纹理分析,因此每个图像序列都包含在许多不同纹理表面前移动的阴影。

关于YOLO算法改进及论文投稿可关注并留言博主的CSDN/QQ

>>>一起交流!互相学习!共同进步!<<<

### 关于医学图像分割数据集集合 #### 数据集分类概述 为了更好地理解现有的医学图像分割数据集,可以按照维度将其分为几大类别:2D 图像、2.5D RGB-D(彩色+深度)图像以及3D 图像[^2]。 #### 2D 医学图像分割数据集 这类数据集中包含了大量用于训练和测试算法的二维切片影像资料。常见的例子有: - **LIDC-IDRI**: 提供肺结节CT扫描图片及其标注信息。 - **BraTS (Brain Tumor Segmentation)**: 集成了多模态MRI脑肿瘤成像资源,支持不同类型的病变区域划分研究工作。 - **JSRT (Japanese Society of Radiological Technology)**: 收录胸部X光照片并带详细的病灶位置标记。 #### 2.5D RGB-D 医学图像分割数据集 此类型增加了额外的一维空间信息——即深度图,有助于更精确地描述物体形状特性。然而,在实际应用中较为少见,因为大多数医疗设备并不直接产出RGB-D形式的结果。尽管如此,某些特定场景下仍能找到适用案例,比如手术导航系统中的器官表面重建等任务。 #### 3D 医学图像分割数据集 三维体素化表示能够更加真实反映人体内部结构情况,因此对于复杂形态目标如心脏、肝脏等部位的研究尤为重要。典型代表如下: - **Medical Decathlon**: 跨越多个解剖部位的大规模公开挑战赛所用到的标准测试集之一,涵盖了多种疾病状态下的高质量标注样本。 - **ACDC (Automatic Cardiac Diagnosis Challenge)**: 致力于推动心血管领域自动化诊断技术进步而设立的比赛平台所提供的专用数据库,内含丰富的左心室动态变化过程记录。 以上各类别均具备像素级别的真值标签,便于研究人员开发新方法时作为金标准来衡量模型表现优劣程度。 ```python import numpy as np from skimage import io def load_3d_image_dataset(path_to_dataset): """ 加载3D医学图像分割数据集 参数: path_to_dataset (str): 数据集路径 返回: tuple: 包含输入图像数组和对应标签数组的元组 """ images = [] labels = [] # 假设文件名为image_*.nii.gz 和 label_*.nii.gz for i in range(1, num_samples + 1): img_path = f"{path_to_dataset}/image_{i}.nii.gz" lbl_path = f"{path_to_dataset}/label_{i}.nii.gz" image = io.imread(img_path) label = io.imread(lbl_path) images.append(image) labels.append(label) return np.array(images), np.array(labels) images, labels = load_3d_image_dataset("/path/to/your/dataset") print(f"Loaded {len(images)} samples.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

加勒比海带66

清风徐来,水波不兴。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值