- 博客(2)
- 收藏
- 关注
原创 LSFL: A Lightweight and Secure Federated Learning Scheme for Edge Computing 论文总结
如今,许多边缘计算服务提供商希望利用边缘节点的计算能力和数据来改进他们的模型,而无需传输数据。联邦学习促进了分布式边缘节点之间全局模型的协作训练,而不共享它们的训练数据。不幸的是,现有的应用于这种情况的隐私保护联邦学习仍然面临三个挑战:1)它通常采用复杂的加密算法,导致训练开销过大;2)在保留数据隐私的同时不能保证拜占庭鲁棒性;3)边缘节点的计算能力有限,可能会频繁下降。因此,隐私保护联邦学习不能有效地应用于边缘计算场景。
2024-06-11 12:38:11 737
原创 Efficient Verifiable Protocol for Privacy-Preserving Aggregation in Federated Learning 论文总结
近年来,联邦学习因其无需从用户获取原始数据即可更新模型参数而受到广泛关注,使其成为各种设备之间协作分布式学习的可行的隐私保护机器学习模型。然而,由于对手可以从共享梯度中跟踪和推断有关用户的私人信息,联邦学习容易受到许多安全和隐私威胁的影响。在这项工作中,提出了一种联邦学习设置中模型参数安全聚合的通信高效协议,其中训练是在用户设备上完成的,而聚合训练的模型可以在服务器端构建,而不会泄露用户的原始数据。该协议对用户 dropout 具有鲁棒性,它使每个用户能够独立验证服务器提供的聚合结果。
2024-05-13 19:38:54 652
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人