LSFL: A Lightweight and Secure Federated Learning Scheme for Edge Computing 论文总结

LSFL:一种用于边缘计算的轻量级安全联合学习方案

摘要

如今,许多边缘计算服务提供商希望利用边缘节点的计算能力和数据来改进他们的模型,而无需传输数据。联邦学习促进了分布式边缘节点之间全局模型的协作训练,而不共享它们的训练数据。不幸的是,现有的应用于这种情况的隐私保护联邦学习仍然面临三个挑战:1)它通常采用复杂的加密算法,导致训练开销过大; 2)在保留数据隐私的同时不能保证拜占庭鲁棒性; 3)边缘节点的计算能力有限,可能会频繁下降。因此,隐私保护联邦学习不能有效地应用于边缘计算场景。因此,我们提出了一种轻量级、安全的联邦学习方案LSFL,它结合了隐私保护和拜占庭鲁棒的特点。具体来说,我们设计了轻量级的双服务器安全聚合协议,该协议利用两个服务器来实现安全的拜占庭鲁棒性和模型聚合。该方案保护数据隐私并防止拜占庭节点影响模型聚合。我们在局域网环境中实现和评估LSFL,实验结果表明LSFL满足保真度、安全性和效率设计目标,与流行的FedAvg方案相比保持了模型精度。

创新点

• 提出了 LSFL,这是一种轻量级的众包 FL 方案,可以帮助边缘节点供应商提高服务质量。它保留了消费者的隐私,并允许消费者在训练阶段退出。

•提出了一种轻量级的拜占庭鲁棒双服务器安全聚合协议。它可以实现安全聚合和安全拜占庭鲁棒性。具体来说,它保留了拜占庭鲁棒性和模型聚合阶段参与者的隐私信息。

•实现了LSFL的原型,并在训练精度、训练时间和拜占庭鲁棒性方面评估了它们的性能。我们的结果表明,LSFL 可以实现保真度、效率和安全设计目标。

就是提出了很好的奖惩机制和使用双服务器而避免了复杂的加解密算法

系统架构

TP:TA 是系统中的第三方,负责选择用于模型聚合的合格参与者(即 DP)。更准确地说,TA 从 DP 中排除了可疑的拜占庭节点,从而确保 SP 可以获得正确的模型。

SP:SP 是系统中的边缘计算服务提供商,可以认为是智能手机提供商(例如,Apple、华为)或自动驾驶服务提供商(Tesla、Ford)。它维护初始模型,并期望使用 DP 中的计算资源和数据优化模型。简单地说,它旨在根据 DP 拥有的数据重新训练模型。特别是,SP 负责模型的聚合,即模型的更新和维护最新的模型。

DPs:DP 是边缘计算节点。它通过自己的传感器收集大量数据,愿意参与联合训练以获得更好的模型。我们还假设它是一个不可信的参与者,具有一定的计算能力,可能会在训练过程中造成不适当的中间结果。

威胁模型

1) 诚实但奇怪的 SP 和 TP:SP 和 TP 正确地遵循协议,但可能会尝试学习附加信息。换句话说,SP 和 TP 试图在遵循协议的同时从参与者那里获得一些私人信息,以便他们可以使用这些信息来推断模型隐私,虽然 SP 和 TP 没有动机破坏 FL 训练过程,但它们可能是由商业利益驱动的,以获得边缘节点的私人信息。

2)拜占庭 DP:在实践中,边缘节点(即 DP)容易受到攻击,因为它们靠近用户端。因此,我们不能保证边缘节点能够正确地执行所有训练任务。此外,我们假设边缘节点遵循协议,并且好奇 SP 返回的信息。但是,他们可能会使用它们的信息来发送任意本地模型更新。假设大多数DP都不是恶意的,这也与真实场景一致。更具体地说,我们考虑两种类型的拜占庭节点:①:搭便车。搭便车是懒惰的参与者。他们不想或有能力共享他们的本地模型更新,并且只希望通过访问 FL 训练过程访问经过训练的模型。它们通常上传随机本地模型更新。②:恶意节点。对于恶意节点,它通常出于目的发起攻击。在这里,我们假设它发起了符号翻转攻击。符号翻转攻击是一种非目标中毒攻击,它翻转本地模型更新的元素符号。

liteseg是一种新型的轻型卷积神经网络,用于语义分割任务。语义分割是计算机视觉中的一个重要问题,旨在将图像中的不同物体或区域进行标记和分割,从而更好地理解图像的内容。 相比于传统的语义分割方法,liteseg具有以下几个优点。首先,它是一种轻型网络,意味着它在计算资源和存储空间方面要求较低。这使得liteseg能够在资源受限的设备上运行,例如移动设备、嵌入式系统等。 其次,liteseg采用了一种新颖的卷积神经网络架构。这种架构结合了最新的深度学习技术和图像处理技术,旨在提高语义分割的准确性和效率。通过适当选择和组合不同类型的卷积层、池化层和解卷积层,liteseg能够捕捉图像中的不同尺度和领域的信息,并将其应用于语义分割。 第三,liteseg具有较低的模型复杂度。这意味着它需要更少的参数和计算量,从而减少了训练和推理的时间成本。这对于实时应用和大规模数据集的训练非常重要。 最后,liteseg还具有较好的鲁棒性和通用性。它可以应用于各种不同类型的图像和场景,包括自然图像、医学图像、遥感图像等。此外,liteseg在面对不同的光照、尺度变化和噪声等因素时也能保持良好的分割效果。 综上所述,liteseg作为一种新型的轻型卷积神经网络,具有在计算资源有限的设备上高效运行、准确性高、模型复杂度低以及对各种图像和场景具有通用性等优点。它有着广阔的应用前景,并在计算机视觉领域具有重要的研究和实际应用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值