LSFL:一种用于边缘计算的轻量级安全联合学习方案
摘要
如今,许多边缘计算服务提供商希望利用边缘节点的计算能力和数据来改进他们的模型,而无需传输数据。联邦学习促进了分布式边缘节点之间全局模型的协作训练,而不共享它们的训练数据。不幸的是,现有的应用于这种情况的隐私保护联邦学习仍然面临三个挑战:1)它通常采用复杂的加密算法,导致训练开销过大; 2)在保留数据隐私的同时不能保证拜占庭鲁棒性; 3)边缘节点的计算能力有限,可能会频繁下降。因此,隐私保护联邦学习不能有效地应用于边缘计算场景。因此,我们提出了一种轻量级、安全的联邦学习方案LSFL,它结合了隐私保护和拜占庭鲁棒的特点。具体来说,我们设计了轻量级的双服务器安全聚合协议,该协议利用两个服务器来实现安全的拜占庭鲁棒性和模型聚合。该方案保护数据隐私并防止拜占庭节点影响模型聚合。我们在局域网环境中实现和评估LSFL,实验结果表明LSFL满足保真度、安全性和效率设计目标,与流行的FedAvg方案相比保持了模型精度。
创新点
• 提出了 LSFL,这是一种轻量级的众包 FL 方案,可以帮助边缘节点供应商提高服务质量。它保留了消费者的隐私,并允许消费者在训练阶段退出。
•提出了一种轻量级的拜占庭鲁棒双服务器安全聚合协议。它可以实现安全聚合和安全拜占庭鲁棒性。具体来说,它保留了拜占庭鲁棒性和模型聚合阶段参与者的隐私信息。
•实现了LSFL的原型,并在训练精度、训练时间和拜占庭鲁棒性方面评估了它们的性能。我们的结果表明,LSFL 可以实现保真度、效率和安全设计目标。
就是提出了很好的奖惩机制和使用双服务器而避免了复杂的加解密算法
系统架构
TP:TA 是系统中的第三方,负责选择用于模型聚合的合格参与者(即 DP)。更准确地说,TA 从 DP 中排除了可疑的拜占庭节点,从而确保 SP 可以获得正确的模型。
SP:SP 是系统中的边缘计算服务提供商,可以认为是智能手机提供商(例如,Apple、华为)或自动驾驶服务提供商(Tesla、Ford)。它维护初始模型,并期望使用 DP 中的计算资源和数据优化模型。简单地说,它旨在根据 DP 拥有的数据重新训练模型。特别是,SP 负责模型的聚合,即模型的更新和维护最新的模型。
DPs:DP 是边缘计算节点。它通过自己的传感器收集大量数据,愿意参与联合训练以获得更好的模型。我们还假设它是一个不可信的参与者,具有一定的计算能力,可能会在训练过程中造成不适当的中间结果。
威胁模型
1) 诚实但奇怪的 SP 和 TP:SP 和 TP 正确地遵循协议,但可能会尝试学习附加信息。换句话说,SP 和 TP 试图在遵循协议的同时从参与者那里获得一些私人信息,以便他们可以使用这些信息来推断模型隐私,虽然 SP 和 TP 没有动机破坏 FL 训练过程,但它们可能是由商业利益驱动的,以获得边缘节点的私人信息。
2)拜占庭 DP:在实践中,边缘节点(即 DP)容易受到攻击,因为它们靠近用户端。因此,我们不能保证边缘节点能够正确地执行所有训练任务。此外,我们假设边缘节点遵循协议,并且好奇 SP 返回的信息。但是,他们可能会使用它们的信息来发送任意本地模型更新。假设大多数DP都不是恶意的,这也与真实场景一致。更具体地说,我们考虑两种类型的拜占庭节点:①:搭便车。搭便车是懒惰的参与者。他们不想或有能力共享他们的本地模型更新,并且只希望通过访问 FL 训练过程访问经过训练的模型。它们通常上传随机本地模型更新。②:恶意节点。对于恶意节点,它通常出于目的发起攻击。在这里,我们假设它发起了符号翻转攻击。符号翻转攻击是一种非目标中毒攻击,它翻转本地模型更新的元素符号。