一、菲涅耳衍射(傍轴近似)
1.1 空域表示
观察平面上复振幅分布:
采用傍轴近似:
假定观察平面和孔径平面之间的距离 z 远远大于孔径 Σ 以及观察区域的最大线度。
菲涅耳近似的物理实质是用二次曲面来代替球面波的惠更斯子波。
菲涅耳衍射公式:
尽管孔径有一定大小,而对观察点有真正贡献的只是孔径上 x=x0 , y=y0点附近的小区域。因此菲涅尔衍射是很容易实现的。
菲涅耳衍射的脉冲响应:
菲涅耳衍射的傅里叶变换表示:
1.2 空间频谱或角谱表示
菲涅耳衍射的传递函数:
二、夫琅禾费衍射(远场近似)
2.1 空域表示
脉冲响应为:
不再具有平移不变性.
衍射光场分布为:
空域中,不再具有卷积形式.
夫琅禾费衍射仍是线性系统,但不是平移不变系统, 不再具有平移不变性.
2.2 频域表示
对此式左右两端作傅里叶变换,得
在频域中可表示成卷积形式。
三、夫琅禾费衍射与菲涅耳衍射的比较
3.1 衍射图样
(1)二者的积分号前面都有
该项对衍射光强的相位分布有影响,但对强度分布形式无影响。
(2)菲涅耳衍射的光场分布正比于
的傅里叶变换,因此,随着 z 的增加,观察平面上光场分布(及强度)发生变化,仅就z轴上的点而言,随 z的增加其亮暗是交替变化的.
夫琅禾费衍射的光场分布正比于衍射屏出射光场U0(x0 , y0)的傅里叶变换,当 z 变化时,衍射图样只是按比例放大或缩小;图样形状不会发生变化,中心点不会出现亮暗交替变化.
3.2 关于近似条件
菲涅耳近似:
夫琅禾费近似:
夫琅禾费近似是比菲涅耳近似更强的近似。
要在近距离上观察到夫琅禾费衍射,关键是要消除菲涅耳衍射积分公式中的
可有两种方法:
(1) 用会聚球面波照射,在其会聚点上放置观察屏;
(2) 在衍射屏和观察平面之间放置一个会聚透镜,用平面波入射.
3.3 两者之间的关系
在夫琅禾费衍射近似条件满足的范围内,菲涅耳衍射近似条件肯定满足,菲涅耳衍射的范围包含了夫琅禾费衍射范围. 可以利用菲涅耳衍射积分公式计算夫琅禾费衍射,反之则不行.
通常将光的衍射分为三种类型:瑞利-索末菲衍射、 菲涅耳衍射(近场衍射)和夫琅禾费衍射(远场衍射)。
四、关于脉冲响应及传递函数
4.1 菲涅耳衍射
具有线性平移不变性,有传递函数,空域中可以写成卷积形式,频域中可写成乘积形式。
4.2 夫琅禾费衍射
夫琅禾费近似破坏了积分公式的平移不变性. 具有线性, 但不具有平移不变性. 不存在专门与夫琅禾费衍射对应的传递函数. 不能写成卷积形式, 也不能写成频谱乘积的形式.
夫琅禾费衍射只不过是菲涅耳衍射的极限情况(即菲涅耳衍射区包含了夫琅禾费衍射区), 菲涅耳衍射的传递函数对夫琅禾费衍射仍然保持有效, 只是 z 值要足够大而已.
由角谱理论得出的传递函数, 对菲涅耳衍射和夫琅禾费衍射都适用.