菲涅耳衍射和夫琅禾费衍射

一、菲涅耳衍射(傍轴近似

1.1 空域表示

观察平面上复振幅分布:

采用傍轴近似:
 假定观察平面和孔径平面之间的距离 z 远远大于孔径 Σ 以及观察区域的最大线度。

菲涅耳近似的物理实质是用二次曲面来代替球面波的惠更斯子波。
菲涅耳衍射公式:

        尽管孔径有一定大小,而对观察点有真正贡献的只是孔径上 x=x0 , y=y0点附近的小区域。因此菲涅尔衍射是很容易实现的。
菲涅耳衍射的脉冲响应:

菲涅耳衍射的傅里叶变换表示:

1.2 空间频谱或角谱表示

菲涅耳衍射的传递函数:

二、夫琅禾费衍射(远场近似)

2.1 空域表示

脉冲响应为:

不再具有平移不变性.

 衍射光场分布为:

空域中,不再具有卷积形式.
夫琅禾费衍射仍是线性系统,但不是平移不变系统, 不再具有平移不变性.

2.2 频域表示

对此式左右两端作傅里叶变换,得

在频域中可表示成卷积形式。

三、夫琅禾费衍射与菲涅耳衍射的比较

3.1 衍射图样

(1)二者的积分号前面都有

该项对衍射光强的相位分布有影响,但对强度分布形式无影响。
(2)菲涅耳衍射的光场分布正比于

的傅里叶变换,因此,随着 z 的增加,观察平面上光场分布(及强度)发生变化,仅就z轴上的点而言,随 z的增加其亮暗是交替变化的.
        夫琅禾费衍射的光场分布正比于衍射屏出射光场U0(x0 , y0)的傅里叶变换,当 z 变化时,衍射图样只是按比例放大或缩小;图样形状不会发生变化,中心点不会出现亮暗交替变化.

3.2 关于近似条件

菲涅耳近似:

夫琅禾费近似:

夫琅禾费近似是比菲涅耳近似更强的近似。
要在近距离上观察到夫琅禾费衍射,关键是要消除菲涅耳衍射积分公式中的

可有两种方法:
(1) 用会聚球面波照射,在其会聚点上放置观察屏;

(2) 在衍射屏和观察平面之间放置一个会聚透镜,用平面波入射.

3.3 两者之间的关系

        在夫琅禾费衍射近似条件满足的范围内,菲涅耳衍射近似条件肯定满足,菲涅耳衍射的范围包含了夫琅禾费衍射范围. 可以利用菲涅耳衍射积分公式计算夫琅禾费衍射,反之则不行.

通常将光的衍射分为三种类型:瑞利-索末菲衍射、 菲涅耳衍射(近场衍射)和夫琅禾费衍射(远场衍射)。

四、关于脉冲响应及传递函数

4.1 菲涅耳衍射

具有线性平移不变性,有传递函数,空域中可以写成卷积形式,频域中可写成乘积形式。

4.2 夫琅禾费衍射

        夫琅禾费近似破坏了积分公式的平移不变性. 具有线性, 但不具有平移不变性. 不存在专门与夫琅禾费衍射对应的传递函数. 不能写成卷积形式, 也不能写成频谱乘积的形式.
        夫琅禾费衍射只不过是菲涅耳衍射的极限情况(即菲涅耳衍射区包含了夫琅禾费衍射区), 菲涅耳衍射的传递函数对夫琅禾费衍射仍然保持有效, 只是 z 值要足够大而已.
        由角谱理论得出的传递函数, 对菲涅耳衍射和夫琅禾费衍射都适用.

### MATLAB实现高斯光束通过透镜聚焦时的菲涅尔衍射仿真 为了在MATLAB中实现高斯光束通过透镜聚焦时的菲涅尔衍射仿真,可以采用基于傅里叶变换的方法。这种方法能够有效地处理近场远场衍射情况下的复杂光学现象。 #### 1. 高斯光束建模 首先定义入射到透镜上的高斯光束。高斯光束可以用以下公式表示: \[ E(x,y,z=0)=E_0 \exp\left(-\frac{x^2+y^2}{w_0^2}\right)\] 其中 \( w_0 \) 是腰斑半径,\( E_0 \) 是电场强度的最大值[^4]。 ```matlab % 参数设置 lambda = 632.8e-9; % 波长 (m) k = 2*pi/lambda; % 波数 zR = pi*w0^2/lambda; % 瑞利长度 N = 512; % 计算网格大小 dx = 1e-6; % 空间步长 (m) [x, y] = meshgrid((-N/2:N/2-1)*dx); r_squared = x.^2 + y.^2; E_in = exp(-(r_squared / w0^2)); ``` #### 2. 使用快速傅立叶变换(FFT)进行菲涅尔衍射计算 根据菲涅耳衍射理论,在给定的距离处,输出平面上的复振幅分布可通过输入平面的复振幅乘以其传播因子后再做二维离散傅立叶变换获得。具体表达式如下所示: \[ U'(x',y')=\iint_{-\infty}^{+\infty}U(x,y)e^{-ik\frac{(x-x')^2+(y-y')^2}{2L}}dxdy \] 这里采用了近似的角谱法来进行数值求解[^1]: ```matlab function out_field = fresnel_propagation(in_field, L, lambda, dx, dy) [M,N] = size(in_field); fx = (-N/2:N/2-1)/N/dx; fy = (-M/2:M/2-1)/M/dy; [FX,FY] = meshgrid(fx,fy); H = exp(1j * pi * lambda * L .* (FX .^ 2 + FY .^ 2)); out_field = ifftshift(ifftn(fftn(fftshift(in_field)) .* H)); end ``` 此函数实现了从初始位置到指定距离后的光场变化过程。注意这里的 `ifftshift` `fftshift` 操作是为了确保频率域中的零频成分位于中心位置以便于后续操作。 #### 3. 结果可视化 最后一步是对结果数据进行绘图展示,观察经过不同焦距透镜之后形成的图像特征。 ```matlab figure(); surf(abs(out_field).^2); shading interp; colorbar; title('Intensity Distribution After Lens'); xlabel('X-axis'); ylabel('Y-axis'); axis equal tight; ``` 上述代码片段展示了如何构建一个完整的流程来模拟高斯光束穿过单个薄透镜后的衍射效果,并给出了相应的强度分布图形化呈现方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薰衣草2333

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值