Lumerical——Eigensolver Analysis

一、整体布局

        上图显示的是“模式分析(MODE ANALYSIS )”窗口。①部分是模式列表 (MODE LIST)”,其中显示模式个数、反射率、传播损失、以及偏振方向。②部分显示的是计算参数;按照启动时设置,窗口左下角显示进行模拟计算用到的缺省参数。③部分包含模拟数据的“绘图区( PLOT AREA )”,并有两个下拉选择框,上边的用来选择要绘制的数据,在右下侧部分用来修改当前模式绘图选项。

二、Modal analysis

(1)frequency:模式计算所用的频率。

(2)wavelength:模式计算所用的波长。

(3)number of trial modes:将要计算的模式个数。

(4)search:用户可以从下拉框中选择模式要查找的选项,可用的选项有:

        ① near n:允许你查找接近期望有效反射率的模式

         use max index:查找接近网格横截面的最大反射率的模式

         n:选择要查找的有效反射率

        ② in range:查找在期望反射率范围内的模式

         n1,n2:定义要查找的反射率的范围

(5)bent waveguide:允许用户为模式和弯曲波导模式求解器指定当前曲率半径

         ① bend radius:从模式求解器的中心测量的波导弯曲半径

         ② bend orientation:曲率半径的方向

(6)Restore Last Settings:将计算参数还原为对应于已计算模式的当前仿真参数。

(7)Calculate Modes:单击本按钮,模式求解器将开始计算上面给出标准的波导模式。

三、绘图区( PLOT AREA )

(1)plot:在下拉框可选择在绘图区绘制什么模拟数据。

        下拉框1绘制:

         ① modal fields:选择本选项后,允许用户通过“COMPONENT”下拉选框选择各种场量, 如电场和磁场振幅及强度、以及坡印廷矢量。

         ② material properties:选择本选项后,允许用户通过“COMPONENT”下拉框选择各种物理量,如反射率、介电常数和电导率。

        下拉框2绘制:

         ① AMPLITUDE(振幅)

         ② PHASE(相位)

         ③ REAL PART(实部)

         ④ IMAGINARY PART(虚部)

(2)component:允许用户从下拉框中选择在绘图区那个特定分量,可用的选项取决于 “PLOT”下拉框的选择。

(3)linear/log scale:确定模拟数据按线性还是对数关系绘制。

(4)superimpose structure:是否显示黑色轮廓的物理结构叠加在模拟数据的切换按钮。

PCA(Principal Component Analysis)是一种经典的线性降维算法,可以用来降低数据的维度,从而更好地进行数据分析和可视化。下面是用C++实现PCA算法的示例代码: ``` #include <iostream> #include <vector> #include <Eigen/Dense> using namespace std; using namespace Eigen; // 计算均值向量 VectorXd mean(vector<VectorXd>& data) { VectorXd meanVec(data[0].size()); meanVec.setZero(); for (int i = 0; i < data.size(); i++) { meanVec += data[i]; } meanVec /= data.size(); return meanVec; } // 计算协方差矩阵 MatrixXd covariance(vector<VectorXd>& data, VectorXd& meanVec) { MatrixXd covMat(data[0].size(), data[0].size()); covMat.setZero(); for (int i = 0; i < data.size(); i++) { VectorXd diff = data[i] - meanVec; covMat += diff * diff.transpose(); } covMat /= data.size(); return covMat; } // 计算特征值和特征向量 void eig(MatrixXd& mat, VectorXd& eigVals, MatrixXd& eigVecs) { EigenSolver<MatrixXd> solver(mat); eigVals = solver.eigenvalues().real(); eigVecs = solver.eigenvectors().real(); } // 选择前k个主成分,并返回新的数据矩阵 MatrixXd pca(vector<VectorXd>& data, int k) { VectorXd meanVec = mean(data); MatrixXd covMat = covariance(data, meanVec); VectorXd eigVals; MatrixXd eigVecs; eig(covMat, eigVals, eigVecs); // 按特征值大小排序 vector<pair<double, VectorXd>> eigPairs; for (int i = 0; i < eigVals.size(); i++) { eigPairs.push_back(make_pair(eigVals[i], eigVecs.col(i))); } sort(eigPairs.begin(), eigPairs.end(), [](const pair<double, VectorXd>& x, const pair<double, VectorXd>& y) {return x.first > y.first;}); // 选择前k个主成分 MatrixXd newMat(data.size(), k); for (int i = 0; i < k; i++) { newMat.col(i) = eigPairs[i].second; } // 将数据投影到新的空间中 MatrixXd newData = (data[0] - meanVec).transpose() * newMat; for (int i = 1; i < data.size(); i++) { newData.conservativeResize(newData.rows(), newData.cols() + 1); newData.rightCols<1>() = (data[i] - meanVec).transpose() * newMat; } return newData; } int main() { vector<VectorXd> data; data.push_back(VectorXd(3)); data[0] << 1, 2, 3; data.push_back(VectorXd(3)); data[1] << 4, 5, 6; data.push_back(VectorXd(3)); data[2] << 7, 8, 9; MatrixXd newData = pca(data, 2); cout << newData << endl; return 0; } ``` 这段代码实现了一个简单的PCA算法,可以将一个三维数据集降至二维,并输出降维后的数据。具体实现步骤为: 1. 计算均值向量 2. 计算协方差矩阵 3. 计算特征值和特征向量 4. 选择前k个主成分,并返回新的数据矩阵 5. 将数据投影到新的空间中 需要注意的是,在实现中使用了Eigen库来进行矩阵计算,需要提前安装Eigen库。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薰衣草2333

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值