输入:
7
2 2 1 1 1 2 1
输出:
3
思路: 核心: 枚举优化+前缀和
法一:01枚举,O(n^2) 。
不过数据范围2e5,会tle,暂时不会优化,此做法先略过= =
法二: 枚举优化,O(n)。
发现答案其实无非三种情况,全黑、全白、白黑,全黑全白的操作知道队伍中黑白牛的数量容易求得。
剩下白黑情况,白黑可以通过枚举白黑分界点求得。
即1 ~ i-1为白,i ~ n为黑 ,其中 1 ≤ i ≤ n。
白黑的数量知道其一即可,用前缀和求,不过多赘述。
ps:代码中前缀和求的是白牛的数量
(刚开始想用dp,不过写到白黑的转移方程发现其实不必转移状态,只要巧用白黑数量即可= =
//dp
#include<iostream>
#include<cmath>
#include<algorithm>
#define _for(i,a,b) for(int i=(a) ;i<=(b) ;i++)
using namespace std;
typedef long long ll;
const int N=2e5+10;
int dp[N];//dp[i] 1到i-1白 i到n黑
int sum[N],a[N];
int main()
{
int ans = 0x7f7f7f7f;
int n;
cin>>n;
_for(i,1,n)//前缀和求白色数量
{
cin>>a[i];
if( a[i] == 1) sum[i] += sum[i-1] + 1;
else sum[i] += sum[i-1];
}
ans = min(sum[n] , n - sum[n] );//全黑全白
//处理白黑情况,枚举分界点
_for(i,2,n)
{
if( a[i]==2 )
{
dp[i] = i-1-sum[i-1] + sum[n] - sum[i];//i为黑
}
else
{
dp[i] = i-1-sum[i-1] + sum[n] - sum[i] + 1;//i为白,操作需要+1,将i变为黑
}
ans = min (ans , dp[i]);
}
cout<<ans;
}