- 博客(32)
- 问答 (1)
- 收藏
- 关注
原创 【python计算机视觉编程——10.OpenCV】
下图为修复图像,可以看到,虽然黑线被修复了,但是整体图像中,原本不需要修复的地方,会被修复函数当作是需要修复的。还可以对实时显示的图像进行模糊。
2024-09-14 21:33:09 1092
原创 【python计算机视觉编程——9.图像分割】
在运行下面代码之前,需要安装scikit-image,记得在自己的虚拟环境下安装(我用pip安装不了,后面改用conda,只要在虚拟环境下,用哪个(pip或conda)都是安装在虚拟环境下)我们需要利用图像像素作为节点定义一个图,除了像素节点外,还有两个特定的节点——“源”点和“汇”点,来分别代表图像的前景和背景,我们需要做的是将所有像素与源点、汇点链接起来。在安装过程中,需要注意下图中的一步,其余都是一直下一步就行。不安装可直接跳到下一步。这里需要注意的是,还需要再安装一个包,否则单单安装上面的会报错。
2024-09-14 21:28:56 1617
原创 【python计算机视觉编程——7.图像搜索】
通常,数据集(或语料库)中一个单词的重要性与它在文档中出现的次数成正比,而与它在语料库中出现的次数成反比。train函数:从图像特征文件中读取特征描述符,使用 K-means 聚类算法生成视觉单词,并计算每个图像的视觉单词直方图。需要利用建立起来的索引找到包含特定单词的所有图像,因此添加candidates_from_word函数到Searcher类中。换句话说,矢量包含了每个单词出现的次数。将查询图像与数据库中所有的图像进行 完全比较(特征匹配)往往是不可行的,庞大的数据库回导致耗时过多。
2024-09-07 23:59:46 1135
原创 【python计算机视觉编程——6.图像聚类】
将每张图像从原始空间投影到降维后的空间。每个图像的投影是减去均值后的特征向量与主成分的点积。上述代码中的一句修改如下,将图像投影到两个主成分上,使用 PCA 的前两个主成分(添加draw函数到ClusterLeafNode中。添加draw函数到ClusterNode类中。
2024-09-01 16:36:21 686
原创 【python计算机视觉编程——5.多视图几何】
该网站可以下载图像点、三维点和照相机参数矩阵的数据集。这里还需要用到之前的Camera类。ppm文件可从该网站获取。
2024-09-01 16:26:53 544
原创 【python计算机视觉编程——4.照相机模型与增强现实】
但是当运行主函数的时候,就会报如下的错误,网上说是使用pip下载的不全面,少了dll文件,所以得用whl文件下载,然后都在说从这个网站(https://www.lfd.uci.edu/~gohlke/pythonlibs/#pyopengl )下载,发现这个网站已经把文件转移了,或者说不是这个链接了。,这里需要注意的是,因为我的python是3.8版本,文件中cp38就是python3.8版本的意思,3.8版本应该是要下载PyOpenGL的3.1.6的版本。K是内标定矩阵,描述的是照相机的投影性质。
2024-09-01 16:21:33 1706
原创 【python计算机视觉编程——3.图像到图像的映射】
接下来是panorama全景图的主要函数,这里需要注意的是,或许是因为我使用的是jupyter,所有x和y的坐标有些许相反,我按照课本上的函数执行是会发生位置对调(也是调了半天),所以我把三处和课本不一致的地方标了出来。单应性矩阵 (H) 是一个 3×3 的矩阵,用来将一个图像中的点坐标(x,y)映射到另一个图像中的点坐标(x′,y′)。(后期是可以封装进行使用的)将一个图像平面上的点映射到另一个图像平面上的技术。将这次需要用于全景的五张图片进行处理,提取每张图像的特征,并且匹配相邻图像之间的特征。
2024-08-26 19:07:25 1911
原创 【python计算机视觉编程——2.局部图像描述子】
角点响应图像:图像中每个像素的值反映了其角点的强度或重要性。高响应值的区域通常被认为是更重要的角点,实现了一个计算 Harris 角点检测响应的函数。Harris 角点检测是一种用于检测图像中的角点(即局部区域的显著特征点)的方法。生成一个图片匹配关系的可视化图,将每张图片作为图中的一个节点,根据图片之间的匹配分数决定是否连接这些节点,并将图保存为 PNG 文件。)并把目录"bin/win64"中三个文件(sift.exe,vl.dll,vl.lib)拖入与本文件同级的目录中。
2024-08-26 19:00:01 1535
原创 【python计算机视觉编程——1.基本的图像操作和处理】
参数sigma为标准差(σ),是高斯滤波器的一个重要参数,它控制滤波器的平滑程度。标准差越大,高斯函数的曲线越宽,滤波器的影响范围就越大。标准差较大: 高斯滤波器会在更大范围内进行平滑,使得图像变得更加模糊,细节和边缘特征会被更强地平滑掉。标准差较小: 高斯滤波器会产生较小范围的平滑效果,图像的细节保留更多。还可以给定转换矩阵,将RGB图像转换为CIE XYZ色彩空间。图像像素值被分成128个区间,用于计算每个区间的像素值频率。可以返回目录中所有jpg图像的列表。
2024-08-26 18:56:03 19106
原创 【机器学习第十四章——.概率图模型】
机器学习第十四章——.概率图模型14.概率图模型14.1 隐马尔可夫模型(HMM)14.2 马尔可夫随机场(MRF)马尔可夫随机场中的分离集势函数14.3 条件随机场(CRF)14.4 学习与推断14.4.1 变量消去14.4.2 信念传播14.5 近似推断14.5.1 MCMC采样14.5.2 变分推断14.6 话题模型14.概率图模型机器学习最重要的任务是根据已观察到的证据(例如训练样本)对感兴趣的未知变量(例如类别标记)进行估计和推测。概率模型提供了一种描述框架,将描述任务归结为计算变量
2024-08-18 23:29:06 1733 1
原创 【机器学习第十二章——计算学习理论】
我们要求L足够一般,以至可以从C中学到任何目标概念而不管训练样例的分布如何,因此,我们会对C中所有可能的目标概念和所有可能的实例分布D进行最差情况的分析。上面的界限可能是过高的估计,主要来源于|H|项,它产生于证明过程中在所有可能假设上计算那些不可接受的假设的概率和。但是,即使不知道确切的目标概念或训练样例抽取的分布,一种概率方法可在给定数目的训练样例之后界定变型空间为。我们通过h在从X中抽取的新实例上的性能来评估L是否成功。定义C的G-合成:网络G能实现的所有函数的类,即网络G表示的假设空间,表示成。
2024-08-18 23:13:07 1027
原创 【机器学习第11章——特征选择与稀疏学习】
过滤式和包裹式的特征选择过程与学习器训练过程有明显的分别,而嵌入式将特征选择过程与学习器训练过程融为一体,两者在同一个优化过程中完成,在学习器训练过程中自动地进行特征选择。压缩感知引起了信号采样及相应重构方式的本质性变化,即:数据的采样和压缩是以低速率同步进行的,这对于降低信息的采样成本和资源都具有重要意又。如果按一般的思想,遍历特征的所有可能子集,会在计算上遭遇组合爆炸,所以可行的方法是子集搜索和子集评价。和猜错近邻上的距离,则说明该特征对区分同类和不同类的最近邻是有益的,则增加该特征的权重;
2024-08-18 22:58:35 1019
原创 【机器学习第10章——降维与度量学习】
机器学习第10章——降维与度量学习10.降维与度量学习10.1 k近邻学习10.2 低维嵌入(MDS)10.3 主成分分析(PCA)最近重构性最大可分性PCA算法描述10.5 流形学习10.5.1 等度量映射(Isomap)10.5.2 局部线性嵌入(LLE)10.6 度量学习主要相似度算法欧氏距离标准欧式距离加权欧式距离曼哈顿距离闵可夫斯基距离马氏距离汉明距离杰卡德相似系数和杰卡德距离余弦相似度调整余弦相似度皮尔森相似度斯皮尔曼相关性近邻成分分析(NCA)10.7 PCA算法实现10.降维与度量学习1
2024-08-12 00:15:51 431
原创 【机器学习第9章——聚类】
机器学习第9章——聚类9.聚类9.1 聚类任务9.2 性能度量9.3 距离计算9.4 原型聚类9.4.1 k均值算法9.4.2 学习向量量化(LVQ)9.4.3 高斯混合聚类9.5 密度聚类DBSCAN算法9.6 层次聚类9.7 kmeans手动算法实现9.8 kmeans算法运用9.聚类9.1 聚类任务在“无监督学习”任务中研究最多、应用最广.聚类目标:将数据集中的样本划分为若干个通常不相交的子集(“簇”,cluster)聚类既可以作为一个单独过程(用于找寻数据内在的分布结构),也可
2024-08-11 23:49:48 2010
原创 【机器学习第8章——集成学习】
如果是回归算法,T个弱学习器得到的回归结果进行算术平均得到的值为最终的模型输出。如果是回归算法,T个弱学习器得到的回归结果进行算术平均得到的值为最终的模型输出。训练决策树模型的节点时,在节点上所有的样本特征中选择一部分样本特征,在这些随机选择的部分样本特征中选择一个最优的特征来做决策树的左右子树划分。在概率近似正确(PAC)学习的框架中,一个概念(一个类),如果存在一个多项式的学习算法能够学习它,对于一个样本,它在某一次含m个样本的训练集的随机采样中,每次被采集到的概率是。
2024-08-05 00:10:36 998
原创 【机器学习第7章——贝叶斯分类器】
机器学习第7章——贝叶斯分类器7.贝叶斯分类器7.1贝叶斯决策论7.2 朴素贝叶斯分类器条件概率的m估计7.3 极大似然估计优点基本原理7.4 贝叶斯网络7.5 半朴素贝叶斯分类器7.6 EM算法7.7 EM算法实现7.贝叶斯分类器7.1贝叶斯决策论一个医疗判断问题有两个可选的假设:病人有癌症;病人无癌症可用数据来自化验结果:正+和负-有先验知识在所有人口中,患病率是0.008对确实有病的患者的化验准确率是0.98对确实无病的患者的化验准确率是0.97、总结如下
2024-08-04 23:46:49 3361
原创 【机器学习第6章——支持向量机】
就需要将样本从原始空间映射到一个更高维的特征空间,使样本在这个特征空间内线性可分。将训练样本分开的超平面可能有很多,哪一个更好呢?凸二次规划问题,能用优化计算包求解,但可以有更高效的办法。,那么一定存在一个高维特征空间使样本线性可分。为提高鲁棒性,通常使用支持向量求解的平均值。若不存在一个能正确划分两类样本的超平面,表示空间中h的范数,对于任意单调递增函数。为核函数k对应的再生核希尔伯特空间。第一步:选取一对需更新的变量。以外的参数,求解对偶问题更新。设样本x映射后的向量为。间隔带的样本不计算损失。
2024-07-28 23:11:19 607
原创 【机器学习第5章——神经网络】
神经网络中有一类模型是为网络状态定义一个“能量”,能量最小化时网络达到理想状态,而网络的训练就是在最小化这个能量函数Boltzmann机就是一种“基于能量的模型”,常见结构如图5.14(a)所示,其神经元分为两层:显层与隐层.显层用于表示数据的输入与输出,隐层则被理解为数据的内在表达. Boltzmann机中的神经元都是布尔型的,即只能取0、1两种状态,状态1表示激活,状态0表示抑制.令向量。策略,在使用该策略时,网络的输出神经元相互竞争,每一时刻仅有一个竞争获胜的神经元被激活,其他神经元的状态被抑制。
2024-07-28 23:03:13 414
原创 【机器学习第4章——决策树】
机器学习第4章——决策树4.决策树4.1 基本流程4.2划分选择4.2.1信息增益4.2.3 基尼指数4.3 剪枝处理4.4 连续与缺失值4.4.1 连续值处理4.4.2缺失值处理4.5 多变量决策树4.决策树决策树基于“树”结构进行决策每个“内部结点”对应于某个属性上的“测试”(test)每个分支对应于该测试的一种可能结果(即该属性的某个取值)每个“叶结点”对应于一个“预测结果”学习过程:通过对训练样本的分析来确定“划分属性”(即内部结点所对应的属性)预测过程:将测试示例从根结点开始
2024-07-28 22:54:17 462
原创 【机器学习第三章——线性模型】
机器学习第三章——线性模型3.线性模型3.1基本形式3.2线性回归3.3 对数几率回归3.4 线性判断分析(LDA)3.5 多分类学习3.6 类别不平衡问题3.线性模型3.1基本形式线性模型试图学得一个通过属性的线性组合来进行预测的函数f(x)=w1x1+w2x2+...+wdxd+bf(x)=w_1x_1+w_2x_2+...+w_dx_d+bf(x)=w1x1+w2x2+...+wdxd+b向量形式:f(x)=wTx+bx=(x1,x2,...,xd)T向量形式:f(x)=
2024-07-20 00:22:05 536
原创 【机器学习第二章——模型评估与选择】
假设第一个预测值为0.8,即该样本有0.8的概率是正例,现在我们假设该样本确实为正例,那么可得到下表,此时的真正例率为1/10,所以该点需要在原来坐标的基础上向上平移1/10,即得到坐标(1/10,0)当ROC图会经过点(1,0)时,即所有真正例都排在所有真反例前,为理想模型。假设第二个预测值为0.7,即该样本有0.7的概率是正例,现在我们假设该样本为反例,也就是预测结果发生了错误,那么可得到下表,此时的假正例率为1/10,所以该点需要在原来坐标的基础上向右平移1/10,即得到坐标(1/10,1/10)
2024-07-20 00:16:49 1026
原创 【机器学习第一章——绪论】
利用经验改善系统自身的性能 随着该领域的发展,目前主要研究智能数据分析的理论和方法,并已成为智能数据分析技术的源泉之一。
2024-07-20 00:10:08 1033
原创 【数字图像处理第12章——目标识别】
参考11.2.2节中的讨论可知,两个区域边界(形状)之间的相似度k定义沱们的形状数仍保持一致的最大阶。用于估计这些参数的(已知其所属的类)模式通常称为训练模式,来自每个类的这样一组模式称为训练集。 串描述适于生成其结构是基于基元的较简单的连接,并且通常是和边界形状有关系的目标模式和其他实体模式。求未知模式向量x的类成员的一种方法是,将它赋给其最接近的原型类。当协方差矩阵的非对角线元素均为零时,多元高斯密度函数就简化为x的每个元素的单变量的高斯密度的乘积。最小距离意味着该式表示最好的匹配。
2024-07-14 12:48:57 820
原创 【数字图像处理第11章——表示与描述】
数字图像处理第11章——表示与描述11.表示与描述11.2颜色特征灰度特征直方图特征颜色矩11.3纹理特征灰度差分统计灰度共生矩阵频谱特征11.4 边界特征链码基于分裂技术的多边形近似标记图简单的边界描述子特征形状数描述子特征11.5区域特征区域面积位置孔连接部分欧拉数偏心度矩11.6运用主成分进行描述11.表示与描述当我们对一幅图像分割成区域后,需要对其进行表示和描述,有两种表示区域的方式当我们对形状特征感兴趣时,可以采用外部特征(区域的边界)表示区域当我们主要注意力集中于区域属性时,可以采用
2024-07-14 12:47:05 774
原创 【数字图像处理第10章——图像分割】
物体的边界、表面方向的改变、不同的颜色、光照明暗的变化一组相连的像素集合,这些像素位于两个不同区域的边界上。
2024-07-14 12:38:59 2071
原创 【数字图像处理第7章——小波和多分辨率处理】
即小区域的波,是一种特殊的长度有限、平均值为0的波形特点(局部分析)傅立叶分析所用的正弦波在时间上没有限制,从负无穷到正无穷,但小波倾向于不规则与不对称。傅里叶变换将信号分解成一系列不同频率正弦波的叠加,小波分析是将信号分解成一系列小波函数的叠加。而这些小波函数都是由一个母小波函数经过平移与尺度伸缩得来的。用不规则的小波函数来逼近尖锐变化的信号显然要比光滑的正弦曲线要好,同样,信号局部的特性用小波函数来逼近显然要比光滑的正弦函数来逼近要好。假设信号ft∈L2R。
2024-07-08 00:09:35 1183
原创 【数字图像处理第9章——形态学图像处理】
形态学:生物学中研究动植物结构的一个分支数学形态学(也称图像代数):以形态为基础对图像进行处理(分析)的数学工具。
2024-07-08 00:01:55 1225
原创 【数字图像处理第8章——图像压缩】
JPEG首先得到一张图片,把它分割成n*n份,然后进行映射变换(离散余弦变换 ),JPEG采用的量化方式,会将值除以某个数然后取整,不同的除数会产生不同的版本,接着就要进行符号编码(霍夫曼编码)。现在我已经完成了映射变换和量化,有了一些数值,我需要的是把这些数据传输给另一边的接收器,然后一旦你压缩了图像,你就得到了一个压缩过的文件,这就是编码器。 当我把相机中保存的一张图像,发送给电脑时,那么存储照片的方法必须一致,需要进行兼容,这就是有如此多的压缩标准的原因。
2024-07-07 23:42:03 1398
原创 【数字图像处理第5-6章】
图像退化,是指图像在形成、存储、处理和传输过程中,由于成像系统、存储设备、处理方法和传输介质的不完善,从而导致的图像质量下降 图像复原也称图像恢复,指的是对退化的图像进行处理,试图恢复降质的图像,还原真面目噪声是图像中不希望有(或不需要)的部分,是最常见的退化因素之一令对信号来说,噪声是一种外部干扰(但噪声本身也是一种信号,携带了噪声源的信息)数字图像的噪声主要来源于图像的获取和传输过程获取图像的数字化过程,如图像传感器的质量和环境条件。
2024-07-01 13:27:32 890
原创 【数字图像处理第4章】
数字图像处理第4章4.频率域滤波4.1 傅里叶变换及反变换为什么要对图像进行变换一维连续傅里叶变换及反变换二维连续傅里叶变换及反变换一维离散傅里叶变换(DFT)及反变换二维离散傅里叶变换及反变换关于频谱|F(u,v)|的说明计算二维DFT4.2 傅里叶变换的性质(1)平移性质(2)分配律(3)线性性质(4)旋转性(5)周期性和共轭对称性(6)可分离性(7)平均值(8)卷积(9)相关性4.3 快速傅里叶变换(FFT)4.4 频率域滤波基础为什么要在频率域研究图像增强傅里叶变换的频率分量和图像空间特征之间的联系
2024-07-01 13:13:08 944
原创 【数字图像处理1-3章】
大多数图像都是由“照射源”和形成图像的“场景元素”对光能的反射或吸收而产生的,是连续的模拟图像,其赋值与坐标都是连续的。 对图像进行的算术运算是逐像素进行的,即两幅图像的对应像素间进行算数运算,包括加减乘除。(1)去除图像噪声 可用于图像平均以减少或去除图像中的噪声原始图像fxy加性噪声ηxy原始图像:f(x,y) 加性噪声\eta(x,y)原始图像fxy加性噪声ηxy污染后的图像gxyfxyηxy。
2024-06-23 02:33:36 2783 1
空空如也
操作系统——文件管理(索引表)
2021-12-27
TA创建的收藏夹 TA关注的收藏夹
TA关注的人