在当今这个数字化高速发展的时代,嵌入式系统复杂性的不断提高,软件缺陷的数量也在显著地增加,应用程序的性能监控和调试显得尤为重要。
为了有效地跟踪和解决可能出现的问题,开发者们需要一款强大且灵活的监控工具。凯云ETest中的主题数据既可以进行实时数据分析,也可以在运行结束后进行数据分析;多条线展示项目进入实时监控页面,查看实时数据分析。
本期着重介绍ETest主题数据分析功能如何实现实时监控和数据分析。
点击查看更多以往相关内容
图片
以下是ETest主题数据分析功能的图文内容,
结合视频效果更佳!
主题数据功能介绍
主题数据是使用多种专业的数据分析方法,对大量数据进行分析和挖掘,最后通过图形化方式展现出数据的分析结果。ETest主要是采集被测件的电压、电流等数据后,通过调用主题数据分析相关的API,进行数据分析。
Demo 介绍
ETest实时监控中的主题数据是通过etopic主题数据管理库实现。支持对通道中采集到的数据进行实时显示,也支持读取yaml文件中定义的测试数据,并通过etopic库中相应函数生成主题数据。配置步骤如下:
1、首先,通过etopic主题数据管理库中的相关方法实现。其中,创建主题数据的API如下:
etopic.create(name,type,option)
功能:创建主题数据。
输入参数:
name:string 类型,主题名称(名称限制 20 个字符以内)
type:string 类型,格式(xy、y、xyy…、yy…)
option:table 类型,主题数据格式信息
option.rate:number 类型,采样率
option.style:string 类型,样式(line:曲线图)
option.title:string 类型,标题
option.labels:table 类型,每条曲线、散点图的名称({y1=“s”,y2=“s”…})
option.axis:table 类型,坐标轴的名称({x=“A”})
2、以正弦波,坐标轴为‘xy’类型为例,讲解其使用方法。本例中,创建电压曲线,代码如下:
etopic.create(‘sinewave’, ‘xy’, { rate=10000, style = ‘line’, title =‘电压曲线图’, axis={x=“时间”}, labels = {y=“电压”} })
3.添加数据(完整代码可在test.lua中查看)后,可以观测到以下波形。
图片
主题数据监测效果图
数据分析 介绍
ETest中主题数据模块仅对数据进行展示,若想对全部数据进行统计和分析,可到“工具>>历史版本>>主题数据”中进行相关操作。
统计的展现内容主要包括数据浏览(数据表格,可视化视图)、数据统计、回归分析。
1、数据浏览包含:数据表格和可视化视图两种方式
数据表格:是把运行过程中产生的数据以数据表格的形式进行展示;
可视化视图:是把数据以坐标轴的方式进行可视化展示,默认为散点图,支持折线图、直方图等。
2、数据统计包含:基本统计、分布统计、聚类统计三种方式。
基本统计:包含最小值、最大值、平均值、中位数以及分布区间;
分布统计:是通过直方图来可视化数值型数据的分布情况,用来直观判断数值型数据的概率分布,是一种特殊类型的柱状图。直方图提供了四种计算小区间间隔个数的方法:squareRoot、scott、freedmanDiaconis、sturges;
聚类统计:是将原始输入数据分割成多个具有不同特征的数据簇,聚类数量是要生成的数据簇的个数,该数值必须大于1。
3、回归分析是根据原始输入数据集中自变量和因变量的值拟合出一条曲线,以反映它们的变化趋势。支持四种类型的回归算法,分别是线性回归、指数回归、对数回归和多项式回归。
ETest的主题数据分析功能使用场景有数据分析、以及在模拟量波形采集的情况下,采集模拟通道输出的连续的波形。可以说,ETest软件就像是生产过程中的“千里眼”,在实时监控和数据分析的基础上,持续优化生产过程,消除各类瓶颈,提升整体生产效率和产品质量。在嵌入式系统的开发和测试过程中,应充分重视实时监控分析的应用,这不仅能够为企业创造更多的价值,也为制造业数字化转型注入了强大动力。
数据分析linux人工智能
发布于2025-04-27
著作权归作者所有