Facial Expression Recognition by De-expression Residue Learning
Key:残余表情识别算法(DERL)
Why?
1.现在的大部分研究关注的都是光照,姿态,遮挡等对表情识别的影响。作者关注的是个体差异。(目的:缓和个体特征的影响并提高面部表情识别能力)
2.人类有能力去识别面部表情通过比较表情脸和中性脸。即,一个人脸表情可以用表情和中性脸组成。
3.中性脸可能不能经常获得
Advantage:
- 新方法。缓和个体特征的影响并提高面部表情识别能力
- 有能力处理无意识的表情、姿势表情、变化类型和种族背景等情形。
- 成功地提高了单数据集的识别能力,在交叉验证数据集上也比最先进的方法表现好。
(交叉验证:在训练模型前将所掌握的数据进行划分,严格来说一般会划分为训练集、验证集和测试集,在训练集上进行训练模型,在验证集上试验效果、调整参数设置,在测试集上进行最终的测试。8:1:1)
How?
- 通过cGAN训练一个生成模型。这个模型对于任何输入的人脸图片生成大致相当的中性脸。(生成器G中保存有residue(精准的表情成分),用于训练学习)
(1)cGAN
CGAN的提出使得GAN可以利用图像与对应的标签进行训练,并在测试阶段 利用给定标签生成特定图像。
·原始的GAN的生成器的问题:标签是什么我们无从得知。
·CGAN的主要贡献就是在原始GAN的生成器与判别器中的输入中加入额外信息(标签)。
生成器G,判别器D。
在CGAN中的生成器G,我们给定一个输入信息和额外信息,之后将两者通过全连接层连接到一起作为隐藏层输入。同样地,在判别器D中输入图像和额外信息也将连接到一起作为隐藏层输入。
通过G生成尽量服从真实数据的样本G(z)
D用来判别输入样本是真实数据x or 生成数据G(z)。最优状态D=0.5
2.第二部分是学习residue,然后进行表情分类。
3.本方法在两个带有表达式BU-4DFE和自发表达式BP4D的数据库用于预训练(数据增强仅适用于预训练)。
在五个公共面部表情数据库上进行评估,包括CK + ,OuluCASIA ,MMI 和BU-3DFE,以及自发表达数据库BP4D+。
损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。
从评估结果中发现,使用DERL取得比较好的结果