Gym - 103185E E - Excellent Views

本文介绍如何使用单调栈和差分数组技巧来解决一个关于数组中元素间不等式条件的问题,即计算满足特定距离约束且值小于某个元素的其他元素数量。通过左右扫描并维护贡献值,有效地解决了这个问题并提供了AC代码实现。
摘要由CSDN通过智能技术生成

题目大意:
给你个n与n个数字的数组
对于每个数字的下标设为i,值设为Hi
看有多少下标为j的数字没有k符合|i−k|≤|i−j| 并且 Hj<Hk这种情况的

思路:
不等式就是表示距离嘛,公式的意思就是一个点向两边散开递增的数字有多少个
那这个意思其实跟单调栈还挺像的
不过呢单调栈都是单方向的向左或者向右一个方向的
这个则是要双向并且递增的
看了师兄的代码
这里的做法是看每个点对左边的点和对右边的点的贡献
首先如果是从左往右扫,对于a[i]
用一个单调栈,遇到下一个a[j]<a[i]的时候
就说明a[i]对(i+j)/2前的元素是有+1的贡献的(因为这时候距离近嘛)
然后优化一下用一个差分记录一下+1的贡献
然后再从有往左扫,跟上面同理代码就出来了

AC代码:

#include <iostream>
#include <vector>
#include <algorithm>
#include <queue>
#include <deque>
#include <string>
#include <math.h>
#include <string.h>
#include <cstdio>
#include <utility>
#define pf(x) (x)*(x)
#define lowerbit(x) x&(-x)
#define mid (l+r>>1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const ll N=1e5+10;
const int inf=0x3f3f3f3f;
int a[N];
int st[N];
int dp[N];
int sum[N];
int to[N];

int main()
{
    ios::sync_with_stdio(false),cin.tie(0);
    int n;
    cin>>n;
    for(int i=1;i<=n;i++)cin>>a[i];
    int top=0;
    st[++top]=1;
    a[n+1]=inf;
    for(int i=2;i<=n+1;i++){//考虑每个a[i]对左边的贡献
        while(top>0&&a[i]>a[st[top]]){
            to[st[top--]]=i-1;
        }
        st[++top]=i;
    }
    for(int i=1;i<=n;i++){//影响范围是中点前的那一段,对这些点贡献+1
        dp[i+1]++;
        if(to[i]!=n)dp[(i+to[i])/2+1]--;//
    }
    for(int i=1;i<=n;i++){
        dp[i]+=dp[i-1];//差分
    }
    top=0;
    a[0]=inf;
    st[++top]=n;
    for(int i=n-1;i>=0;i--){//考虑每个a[i]对右边的贡献
        while(top>0&&a[i]>a[st[top]])to[st[top--]]=i+1;
        st[++top]=i;
    }
    for(int i=1;i<=n;i++){//跟上面同理
        sum[i-1]++;
        if(to[i]!=1)sum[(i+to[i]+1)/2-1]--;
    }
    for(int i=n;i>=1;i--)sum[i]+=sum[i+1];
    for(int i=1;i<=n;i++)cout<<dp[i]+sum[i]<<' ';
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值