题目大意:
给你你一个这样的函数,g(x)代表x的每个位数和,比如g(123)代表1+2+3=6,给你A,B,C,D,N,让你求1到N最小的函数值
思路:
对于g(x),我们可以发现很多数的g(x)是一样的
因为数据范围最大是1000000,那么g(x)最大肯定是g(999999)=54
而对于每个g(x)相同的数字
我们会发现它其实就是一个二次函数
那么对于每个g(x)我们利用二次函数性质
找对称轴与左右两个端点即可
二次函数对称轴公式为-b/(2a),a代表x2系数,b代表x系数
代入变量错了导致一直WA
麻了
AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a,b,c,d,n;
vector<ll>v[10010];
ll calc_g(ll x){
ll ans=0;
ll temp=x;
while(temp)
{
ans+=temp%10;
temp/=10;
}
return ans;
}
ll calc(ll x)
{
ll g=calc_g(x);
return a*x*x*g+b*x*x+c*x*g*g+d*x*g;
}
void init(){
for(ll i=1;i<=1000000;i++){
v[calc_g(i)].push_back(i);
}
return;
}
int main()
{
init();
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&n);
ll ans=calc(1);
for(int i=1;i<=54;i++){
ll A=a*i+b;
if(A==0)continue;
ll B=c*i*i+d*i;
ll dcz=(-B)/(A+A);
if(dcz<=0)continue;
ll temp=upper_bound(v[i].begin(),v[i].end(),dcz)-v[i].begin();//对称轴位置
ll bound=upper_bound(v[i].begin(),v[i].end(),n)-v[i].begin();//边界不能超过n
if(temp<bound&&temp>=0&&v[i][temp]<=n)ans=min(calc(v[i][temp]),ans);
if(temp-1<bound&&temp-1>=0&&v[i][temp-1]<=n)ans=min(calc(v[i][temp-1]),ans);
}
for(int i=1;i<=54;i++){//枚举最左边与最右边
ll x1=v[i][0];
if(x1>n)break;
ll x2=v[i][upper_bound(v[i].begin(),v[i].end(),n)-v[i].begin()-1];//找到第一个小于等于n的数字
ans=min(calc(x1),ans);
ans=min(calc(x2),ans);
}
printf("%lld\n",ans);
}
return 0;
}