2021CCPC网络赛1007 Function HDU - 7106

本文介绍了一种解决给定函数g(x)问题的方法,通过发现重复g值的二次函数特性,利用对称轴找到最接近目标的数,从而快速找到1到N范围内函数g(x)的最小值。作者提供了C++代码实例,并详细解析了关键步骤和技巧。
摘要由CSDN通过智能技术生成

题目大意:
给你你一个这样的函数,g(x)代表x的每个位数和,比如g(123)代表1+2+3=6,给你A,B,C,D,N,让你求1到N最小的函数值
在这里插入图片描述
思路:
对于g(x),我们可以发现很多数的g(x)是一样的
因为数据范围最大是1000000,那么g(x)最大肯定是g(999999)=54
而对于每个g(x)相同的数字
我们会发现它其实就是一个二次函数
那么对于每个g(x)我们利用二次函数性质
找对称轴与左右两个端点即可
二次函数对称轴公式为-b/(2a),a代表x2系数,b代表x系数
代入变量错了导致一直WA
麻了

AC代码:

#include <bits/stdc++.h>

using namespace std;
typedef  long long ll;
ll a,b,c,d,n;
vector<ll>v[10010];
ll calc_g(ll x){
    ll ans=0;
    ll temp=x;
    while(temp)
    {
        ans+=temp%10;
        temp/=10;
    }
    return ans;
}

ll calc(ll x)
{
    ll g=calc_g(x);
    return a*x*x*g+b*x*x+c*x*g*g+d*x*g;
}

void init(){
    for(ll i=1;i<=1000000;i++){
        v[calc_g(i)].push_back(i);
    }
    return;
}
int main()
{
    init();
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&n);
        ll ans=calc(1);
        for(int i=1;i<=54;i++){
        	ll A=a*i+b;
        	if(A==0)continue;
        	ll B=c*i*i+d*i;
        	ll dcz=(-B)/(A+A);
        	if(dcz<=0)continue;
            ll temp=upper_bound(v[i].begin(),v[i].end(),dcz)-v[i].begin();//对称轴位置
            ll bound=upper_bound(v[i].begin(),v[i].end(),n)-v[i].begin();//边界不能超过n
            if(temp<bound&&temp>=0&&v[i][temp]<=n)ans=min(calc(v[i][temp]),ans);
            if(temp-1<bound&&temp-1>=0&&v[i][temp-1]<=n)ans=min(calc(v[i][temp-1]),ans);
        }
        for(int i=1;i<=54;i++){//枚举最左边与最右边
            ll x1=v[i][0];
            if(x1>n)break;
            ll x2=v[i][upper_bound(v[i].begin(),v[i].end(),n)-v[i].begin()-1];//找到第一个小于等于n的数字
            ans=min(calc(x1),ans);
            ans=min(calc(x2),ans);
        }
        printf("%lld\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值