2021CCPC网络赛 hdu 7106 Function (函数求极值,思路转换,二分,三分)

10 篇文章 0 订阅
7 篇文章 0 订阅

hdu 7106 Function

题意:
  • 让求这个函数的最小值( x ∈ [ 1 , n ] x \in[1,n] x[1,n]
分析:
  • 若直接枚举 x x x 会超时,转换思路:去枚举 g [ x ] g[x] g[x] g [ x ] g[x] g[x] 最大才 54 54 54

  • 先 将 式 子 化 简 一 下 : f = ( A ∗ g [ x ] + b ) x 2 + ( C ∗ g [ x ] 2 + D ∗ g [ x ] ) x 先将式子化简一下:f=(A*g[x]+b)x^2+(C*g[x]^2+D*g[x])x f=(Ag[x]+b)x2+(Cg[x]2+Dg[x])x

  • 先预处理打表,将每个对应 g [ x ] g[x] g[x] i i i p u s h push push v e c t o r vector vector

    然后再遍历枚举 g [ x ] g[x] g[x] ,根据函数的对称轴求函数极值即可

    可以采用二分(要分类讨论),三分不需要

    二分的三种情况我想不清楚为什么不能合并

二分:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int N=1e6+5;

vector <int> g[66];
int fa[N];
ll cal(ll m,ll n,ll x) { return m*x*x+n*x; }
signed main()
{
    for (int i=1;i<=1e6;i++)
    {
        fa[i]=fa[i/10]+i%10;
        g[fa[i]].push_back(i);
    }
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int a,b,c,d,p;
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&p);
        ll ans=1e18;
        for(int i=1;i<=54;i++)
        {
            if(g[i][0]>p) break;
            ll m=1ll*a*i+b, n=1ll*c*i*i+d*i, h=0;
            int l=0, r=upper_bound(g[i].begin(),g[i].end(),p)-g[i].begin()-1;
            if(m<=0)
            {
                ans=min({ans,cal(m,n,g[i][0]),cal(m,n,g[i][r])});
                continue;
            }
            h=n/(-2*m);
            if(h<g[i][0]) ans=min(ans,cal(m,n,g[i][0])); // 这里不能取<=,因为h本是小数,取整会变小
            else if(h>=g[i][r]) ans=min(ans,cal(m,n,g[i][r])); 
            // 我觉得这两种特殊情况可以合并到第三种,只需要把for里面r再判断一下有无越界即可
            // 交到杭电就一直wa,想不明白
            else 
            {
                r=upper_bound(g[i].begin(),g[i].end(),h)-g[i].begin()-1;
                for(int j=r;j<=r+1;j++) ans=min(ans,cal(m,n,g[i][j]));
            }
        }
        printf("%lld\n",ans);
    }

    return 0;
}
三分:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int N=1e6+5;

vector <int> g[66];
int fa[N];
ll cal(ll m,ll n,ll x) { return m*x*x+n*x; }
signed main()
{
    for (int i=1;i<=1e6;i++)
    {
        fa[i]=fa[i/10]+i%10;
        g[fa[i]].push_back(i);
    }
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int a,b,c,d,p;
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&p);
        ll ans=1e18;
        for(int i=1;i<=54;i++)
        {
            if(g[i][0]>p) break;
            ll m=1ll*a*i+b, n=1ll*c*i*i+d*i, h=0;
            int l=0, r=upper_bound(g[i].begin(),g[i].end(),p)-g[i].begin()-1;
            if(m<=0) 
            {
                ans=min({ans,cal(m,n,g[i][0]),cal(m,n,g[i][r])});
            }
            else 
            {
                while(l+5<r)
                {
                    int lmd=l+(r-l)/3, rmd=r-(r-l)/3;
                    if(cal(m,n,g[i][lmd])<=cal(m,n,g[i][rmd])) r=rmd;
                    else l=lmd;
                }
                for(int j=l;j<=r;j++) ans=min(ans,cal(m,n,g[i][j]));
            }
        }
        printf("%lld\n",ans);
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yezzz.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值