- 博客(8)
- 收藏
- 关注
原创 xgboost gpu版本编译与python接口安装
1.下载源码 git clone --recursive https://github.com/dmlc/xgboost –recursive 递归clone,不加的话gputreeshape文件夹会为空,导致GPU版本编译失败 2.编译 2.1依赖工具版本 cmake version 3.16.3 GNU Make 4.2.1 2.2 编译 在xgboost目录 mkdir build cd build cmake .. -DUSE_CUDA=ON make -j4 3.安装python接口 3.1
2020-12-27 18:16:48 392
原创 TensorFlow2.4 问题集合
1.Train 1.1 内存分配问题 报错信息 Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR 解决方法 gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=1.0) config = tf.compat.v1.ConfigProto(gpu_options=gpu_options) config.gpu_options.allow_growth
2020-12-27 17:43:37 510 1
原创 Ubuntu20.04 DL环境配置
1.Ubuntu20.04 1.1 apt 源 deb http://mirrors.aliyun.com/ubuntu/ focal main restricted universe multiverse deb-src http://mirrors.aliyun.com/ubuntu/ focal main restricted universe multiverse deb http://mirrors.aliyun.com/ubuntu/ focal-security main restricted
2020-12-27 16:50:27 322
原创 Git常用撤销命令
1. add操作后,需要撤销 (base) ➜ git-study git:(main) ✗ git status On branch main Your branch is up to date with 'origin/main'. Untracked files: (use "git add <file>..." to include in what will be committed) 2 3 nothing added to commit but untracked fi
2020-12-25 18:43:19 452
原创 Linux常用命令
1.文件操作 1.1查看文件数量 查看某个文件夹下文件的个数 ls -l|grep "^-"| wc -l 查看某个文件夹下文件的个数,包括子文件夹下的文件个数 ls -lR|grep "^-"| wc -l 查看某个文件夹下文件夹的个数 ls -l|grep "^d"| wc -l 查看某个文件夹下文件夹的个数,包括子文件夹下的文件夹个数 ls -lR|grep "^d"| wc -l 查看文件夹下所有的文件和文件夹,也就是统计ls -l命令所输出的行数 ls -l| wc -l 命令说明:
2020-12-25 13:50:26 76
原创 Conda常用命令
环境 创建环境 conda create --name py27 python=2.7 查询现有环境 conda info -e 删除环境 conda remove -n py27 --all 切换环境 conda acticate py27 换源 配置国内镜像地址 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add
2020-12-25 13:16:38 205
原创 Git常用命令
克隆 git clone <git链接> 从远程仓库clone到本地 初始化 git init 初始化版本库 git remote add origin <git链接> 将远程仓库与本地仓库关联 git push -u origin master 将本地仓库内容提交到远程仓库 (第一次推送加 -u) 提交修改 git status 查看当前状态 git diff 查看已修改内容 git add 将修改
2020-12-22 12:11:42 106
原创 [sklearn] KFold与StratifiedKFold用法
1. 概览 KFold和StratifiedKFold的作用都是用于配合交叉验证的需求,将数据分割成训练集和测试集。 2. 区别 KFold随机分割数据,不会考虑数据的分布情况。 StratifiedKFold会根据原始数据的分布情况,分割出同分布的数据。 3. 实验 3.1 代码 from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold import numpy as np
2020-12-21 16:40:21 776
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人