- 博客(11)
- 收藏
- 关注
原创 多目标优化问题概述
多目标优化问题(Multi-objective Optimization Problem, MOP)是指在优化过程中同时考虑多个目标函数的问题。求解帕累托最优解,每种方法都有其适用场景和优缺点。简单问题:可以选择加权求和法或ε-约束法。复杂问题:推荐使用NSGA-II、MOEA/D、PAES或SPEA2等高级算法。计算资源有限:可以选择计算复杂度较低的方法,如加权求和法。需要高多样性:可以选择NSGA-II、MOEA/D或PAES等方法。
2024-10-24 11:43:54 523
原创 特征选择的常用方法
过滤法:计算简单,通用性强,但忽略特征间的关系。包装法:考虑特征间的交互,高准确性,但计算复杂度高,依赖模型。嵌入法:高效性好,考虑特征间的交互,但模型依赖,解释性较差。混合方法:综合多种方法的优势,灵活性高,但复杂度和计算资源需求较高。粒子群优化(PSO):全局搜索能力强,计算复杂度高,易早熟。遗传算法(GA):全局搜索能力强,鲁棒性强,计算复杂度高,参数敏感。蚁群优化(ACO):全局搜索能力强,鲁棒性强,自适应性强,计算复杂度高,参数敏感。差分进化(DE)
2024-10-22 10:11:08 656
原创 Pearson相关系数及其python和MATLAB代码实现
Pearson 相关系数。(也称为 Pearson R)是线性回归中常用的相关系数。
2024-10-15 10:00:00 922
原创 群智能算法之AO算法阅读笔记
通过模拟青蒿素治疗疟疾的过程,设计了一种新的元启发式算法——Artemisinin Optimization (AO) 算法。该算法通过三个阶段的数学公式,分别模拟了高剂量药物的全局搜索、逐渐减少药物剂量的局部搜索和防止复发的后巩固阶段。这些公式确保了算法在全局搜索和局部开发之间的平衡,从而有效地避免局部最优,找到全局最优解。研究结果为优化算法的设计提供了新的思路,并展示了 AO 算法在实际应用中的潜力。FEs=0;it=1;end。
2024-10-12 09:30:00 320
原创 Jupyter notebook的使用
win+R,在命令界面输入:执行命令后,就会启动jupyter服务,同时打开浏览器页面,显示jupyter的home页面。默认情况下,会使用当前所在的目录作为根目录。
2024-09-08 09:44:47 274
原创 动态规划之最小花费问题
在某条线路上有N个火车站,有三种距离的路程,L1,L2,L3,对应的价格为C1,C2,C3.其对应关系如下:距离s 票价输入保证0
2024-04-27 15:26:35 454
原创 cin,cin.getline(),getline()
当同时使用cin>>,cin.getline()时,需要注意的是,在cin>>输入流完成之后,需要使用cin.get()消除换行符带来的影响。3、如果将例子中cin.getline()改为cin.getline(m,5,‘a’);1、cin.getline()实际上有三个参数,cin.getline(接收字符串的变量,接收字符个数,用法2:接收一个字符串,遇“空格”、“TAB”、“回车”就结束。输入:aaaa aaaa aaaa aaaa。输出:aaaa aaaa aaaa aaaa。
2024-01-23 22:29:11 664
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人