1. 引言
- 背景:疟疾是一种严重的全球健康问题,青蒿素(Artemisinin)是治疗疟疾的有效药物。受青蒿素治疗疟疾过程的启发,作者提出了一种新的元启发式算法——Artemisinin Optimization (AO) 算法。
- 目的:设计一种高效的元启发式算法,用于解决优化问题,并验证其在医学图像分割中的应用效果。
2. 算法设计
2.1 算法灵感
- 治疗过程:青蒿素治疗疟疾的过程分为三个阶段:
- 全面清除阶段:使用高剂量的青蒿素迅速减少体内的疟原虫数量。
- 局部清除阶段:逐渐减少药物剂量,持续清除剩余的疟原虫。
- 后期巩固阶段:防止疟疾复发,增强算法跳出局部最优的能力。
2.2 算法流程
- 初始化:
-
种群初始化:将青蒿素微粒视为搜索代理,整个种群构成算法的解集。
-
解集的初始化公式如下: A N , D = B + R × ( T − B ) = [ a 1 , 1 a 1 , 2 ⋯ a 1 , D a 2 , 1 a 2 , 2 ⋯ a 2 , D ⋮ ⋮ ⋱ ⋮ a N , 1 a N , 2 ⋯ a N , D ] A_{N,D} = B + R \times (T - B) = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,D} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N,1} & a_{N,2} & \cdots & a_{N,D} \end{bmatrix} AN,D=B+R×(T−B)= a1,1a2,1⋮aN,1a1,2a2,2⋮aN,2⋯⋯⋱⋯a1,Da2,D⋮aN,D
其中,( T ) 和 ( B ) 分别表示解空间的上下界,( R ) 是一组介于 [0, 1] 之间的随机数序列。
-
3. 三个阶段的数学公式
3.1 全面清除阶段
- 目标:模拟高剂量青蒿素的使用