tf中结构的一些参数

1.EarlyStopping早停止

原来是:

tf.keras.callbacks.EarlyStopping(
    monitor='val_sparse_categorical_crossentropy',
    patience=300,
    min_delta=1e-3
),

把'val_sparse_categorical_crossentropy'换成了'accuracy',用‘accuracy’来控制停止

Keras各种Callbacks介绍 - 知乎 (zhihu.com)

2.怎么加recall metric等

tensorflow2.0使用自带的函数求精准率和召回率(解决Shapes (None, 10) and (None, 1) are incompatible)_shapes (none, 1) and (none, 10) are incompatible_青峰不长存的博客-CSDN博客

3.报错:logits and labels must have the same first dimension, got logits shape [32,4] and labels shape [128]

发现我使用的label是one-hot encoding,所以不能使用sparse_categorical_crossentropy,必须使用
categorical_crossentropy 。但如果标签没有经过one-hot encoding,就可以使用sparse_categorical_crossentropy了
keras损失函数踩坑_logits and labels must have the same first dimensi_克莱默申克的博客-CSDN博客

categorical_crossentropy 和 sparse_categorical_crossentropy的区别_sparse_categorical_crossentropy(y_true = y, y_pred_Zero_to_zero1234的博客-CSDN博客

compile用法参数:

机器学习|model.compile()用法 - 知乎 (zhihu.com)

4.以后可能用到

KERAS(4.调整metrics-附带训练过程中recall及precision输出) - 知乎 (zhihu.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值