树链剖分
一些性质:
- 重链互不相交
- 一个点到根节点的路径上,经过的轻链和重链均最多 O ( n l o g n ) \mathcal{O(nlogn)} O(nlogn) 条
模板:
void dfs1(int u, int p){
dep[u] = dep[p] + 1;
siz[u] = 1;
fa[u] = p;
for(int i = head[u]; i; i = e[i].nxt){
int v = e[i].to;
if(v == p)
continue;
dfs1(v, u);
siz[u] += siz[v];
if(siz[v] > siz[son[u]])
son[u] = v;
}
}
void dfs2(int u, int tp){
top[u] = tp;
dfn[u] = ++dfntot;
pre[dfntot] = u;
if(son[u])
dfs2(son[u], tp);
for(int i = head[u]; i; i = e[i].nxt){
int v = e[i].to;
if(v == fa[u] || v == son[u])
continue;
dfs2(v, v);
}
}
P3384 【模板】重链剖分/树链剖分
题意:
一棵 n n n 节点的树,支持四种操作:
- 路径上点权加 z z z
- 求路径点权和
- 子树内点权加 z z z
- 求子树点权和
解析:
d f s dfs dfs 序将树上问题转化为区间问题,一棵子树内的 d f s dfs dfs 序是连续的,一条链内的 d f s dfs dfs 序是连续的。
线段树维护区间和。对第一、二种操作,在每条链上进行修改和查询,即区间 [ d f n ( t o p u ) , d f n ( u ) ] [dfn(top_u), dfn(u)] [dfn(topu),dfn(u)] ,不断向上跳;对第二种操作,在子树内修改和查询,即区间 [ d f n ( u ) , d f n ( u ) + s i z e ( u ) − 1 ] [dfn(u), dfn(u) + size(u)-1] [dfn(u),dfn(u)+size(u)−1]
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 1e6+10;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
#define int ll
int head[maxn], tot;
struct edge{
int to, nxt;
}e[maxn<<1];
void add(int a, int b){
e[++tot].nxt = head[a];
e[tot].to = b;
head[a] = tot;
}
ll n, m, root, mod;
int dep[maxn], top[maxn], siz[maxn], son[maxn], fa[maxn];
int dfn[maxn], pre[maxn], dfntot;
ll v[maxn];//点权
void dfs1(int u, int p){
dep[u] = dep[p] + 1;
siz[u] = 1;
fa[u] = p;
for(int i = head[u]; i; i = e[i].nxt){
int v = e[i].to;
if(v == p)
continue;
dfs1(v, u);
siz[u] += siz[v];
if(siz[v] > siz[son[u]])
son[u] = v;
}
}
void dfs2(int u, int tp){
top[u] = tp;
dfn[u] = ++dfntot;
pre[dfntot] = u;
if(son[u])
dfs2(son[u], tp);
for(int i = head[u]; i; i = e[i].nxt){
int v = e[i].to;
if(v == fa[u] || v == son[u])
continue;
dfs2(v, v);
}
}
struct sgt{
ll s, tag;
}t[maxn<<2];
inline int ls(int x){return x << 1;}
inline int rs(int x){return x << 1 | 1;}
void pushup(int k){
t[k].s = (t[ls(k)].s + t[rs(k)].s) % mod;
}
void pushdown(int k, int l, int r){
if(t[k].tag){
ll tag = t[k].tag;
int mid = (l+r) >> 1;
t[ls(k)].tag = (tag + t[ls(k)].tag) % mod;
t[ls(k)].s = (tag * (mid - l + 1) + t[ls(k)].s) % mod;
t[rs(k)].tag = (tag + t[rs(k)].tag) % mod;
t[rs(k)].s = (tag * (r - mid) + t[rs(k)].s) % mod;
t[k].tag = 0;
}
}
void build(int k, int l, int r){
t[k].tag = 0;
if(l == r){
t[k].s = v[pre[l]] % mod;
return;
}
int mid = (l+r) >> 1;
build(ls(k), l, mid);
build(rs(k), mid+1, r);
pushup(k);
}
void modify(int k, int l, int r, int x, int y, int w){ //区间修
if(x <= l && y >= r){
t[k].s = (t[k].s + w * (r - l + 1) % mod) % mod;
t[k].tag = (t[k].tag + w) % mod;
return;
}
pushdown(k, l, r);
int mid = (l+r) >> 1;
if(x <= mid)
modify(ls(k), l, mid, x, y, w);
if(y > mid)
modify(rs(k), mid+1, r, x, y, w);
pushup(k);
}
ll query(int k, int l, int r, int x, int y){
if(x <= l && y >= r)
return t[k].s;
pushdown(k, l, r);
ll res = 0;
int mid = (l+r) >> 1;
if(x <= mid)
res = (res + query(ls(k), l, mid, x, y)) % mod;
if(y > mid)
res = (res + query(rs(k), mid+1, r, x, y)) % mod;
return res;
}
ll query_route(int x, int y){
ll res = 0;
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]])
swap(x, y);
res = (res + query(1, 1, n, dfn[top[x]], dfn[x])) % mod;
x = fa[top[x]];
}
if(dep[x] < dep[y])
swap(x, y); //x深
res = (res + query(1, 1, n, dfn[y], dfn[x])) % mod;
return res;
}
void modify_route(int x, int y, int w){
w %= mod;
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]])
swap(x, y);
modify(1, 1, n, dfn[top[x]], dfn[x], w);
x = fa[top[x]];
}
if(dep[x] < dep[y])
swap(x, y); //x深
modify(1, 1, n, dfn[y], dfn[x], w);
}
ll query_tree(int x){
ll res = query(1, 1, n, dfn[x], dfn[x] + siz[x] - 1);
return res;
}
void modify_tree(int x, int w){
w %= mod;
modify(1, 1, n, dfn[x], dfn[x] + siz[x] - 1, w);
}
signed main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> m >> root >> mod;
for(int i = 1; i <= n; i++)
cin >> v[i];
for(int i = 1; i < n; i++){
int a, b;
cin >> a >> b;
add(a, b); add(b, a);
}
dfs1(root, 0);
dfs2(root, root);
build(1, 1, n);
for(int i = 1; i <= m; i++){
int op, x, y, z;
cin >> op;
if(op == 1){
cin >> x >> y >> z;
modify_route(x, y, z);
}
else if(op == 2){
cin >> x >> y;
ll res = query_route(x, y);
cout << res << endl;
}
else if(op == 3){
cin >> x >> z;
modify_tree(x, z);
}
else{
cin >> x;
ll res = query_tree(x);
cout << res << endl;
}
}
return 0;
}
P3833 [SHOI2012]魔法树
题意:
支持路径上点权加,和查询子树点权和
解析:
同上题
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 1e5+10;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
int n, q;
int head[maxn], tot;
struct edge{
int to, nxt;
}e[maxn << 1];
int dep[maxn], siz[maxn], fa[maxn], son[maxn], top[maxn];
int dfn[maxn], dfntot, pre[maxn];
int val[maxn];
int ls(int x){return x << 1;}
int rs(int x){return x << 1 | 1;}
struct sgt{
ll s, tag;
}t[maxn << 2];
void add(int a, int b){
e[++tot].nxt = head[a];
e[tot].to = b;
head[a] = tot;
}
void dfs1(int u, int p){
dep[u] = dep[p] + 1;
siz[u] = 1;
fa[u] = p;
for(int i = head[u]; i; i = e[i].nxt){
int v = e[i].to;
if(v == p)
continue;
dfs1(v, u);
siz[u] += siz[v];
if(siz[v] > siz[son[u]])
son[u] = v;
}
}
void dfs2(int u, int tp){
top[u] = tp;
dfn[u] = ++dfntot;
pre[dfntot] = u;
if(son[u])
dfs2(son[u], tp);
for(int i = head[u]; i; i = e[i].nxt){
int v = e[i].to;
if(v == fa[u] || v == son[u])
continue;
dfs2(v, v);
}
}
void pushup(int k){
t[k].s = t[ls(k)].s + t[rs(k)].s;
}
void build(int k, int l, int r){
t[k].tag = 0;
if(l == r){
t[k].s = val[pre[l]];
return;
}
int mid = (l+r) >> 1;
build(ls(k), l, mid);
build(rs(k), mid+1, r);
pushup(k);
}
void pushdown(int k, int l, int r){
if(t[k].tag){
int mid = (l+r) >> 1;
t[ls(k)].s += (mid - l + 1) * t[k].tag;
t[ls(k)].tag += t[k].tag;
t[rs(k)].s += (r - mid) * t[k].tag;
t[rs(k)].tag += t[k].tag;
t[k].tag = 0;
}
}
void modify(int k, int l, int r, int x, int y, int w){
if(x <= l && y >= r){
t[k].s += w * (r - l + 1);
t[k].tag += w;
return;
}
pushdown(k, l, r);
int mid = (l+r) >> 1;
if(x <= mid)
modify(ls(k), l, mid, x, y, w);
if(y > mid)
modify(rs(k), mid+1, r, x, y, w);
pushup(k);
}
ll query(int k, int l, int r, int x, int y){
if(x <= l && y >= r)
return t[k].s;
pushdown(k, l, r);
int mid = (l+r) >> 1;
ll res = 0;
if(x <= mid)
res += query(ls(k), l, mid, x, y);
if(y > mid)
res += query(rs(k), mid+1, r, x, y);
return res;
res += query(ls(k), l, mid, x, y);
}
void Add(int u, int v, int w){
while(top[u] != top[v]){
if(dep[top[u]] < dep[top[v]])
swap(u, v);
modify(1, 1, n, dfn[top[u]], dfn[u], w);
u = fa[top[u]];
}
if(dep[u] < dep[v])
swap(u, v);
modify(1, 1, n, dfn[v], dfn[u], w);
}
void Query(int u){
ll res = query(1, 1, n, dfn[u], dfn[u] + siz[u] - 1);
cout << res << endl;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n;
for(int i = 1; i < n; i++){
int a, b;
cin >> a >> b;
a++, b++;
add(a, b);
add(b, a);
}
dfs1(1, 0);
dfs2(1, 1);
build(1, 1, n);
cin >> q;
string op;
int u, v, d;
for(int i = 1; i <= n; i++){
cin >> op;
if(op == "A"){
cin >> u >> v >> d;
u++, v++;
Add(u, v, d);
}
else if(op == "Q"){
cin >> u;
u++;
Query(u);
}
}
return 0;
}
P3401 洛谷树
题意:
边有边权,支持修改边权,询问 ( u , v ) (u,v) (u,v) 之间的子路径异或值的和
子路径是路径连续的一段,路径的异或值是路径上边权的异或值
解析:
首先考虑对于树上一条路径,如果快速求出该路径的异或值。
很自然的想法的利用前缀异或和,设 s s s 为前缀异或数组, s i s_i si 的值是根节点到节点 i i i 路径上边权的异或值。
则路径 P = ( u , . . . v ) P = (u,...v) P=(u,...v) 的异或值为 s i ⊕ s j s_i \oplus s_j si⊕sj
然后考虑如何快速求出一个路径上的所有子路径的异或值之和。
注意到最大边权为 1023,可以考虑每一位。假设当前考虑第 k k k 位,路径 P = ( u , . . . v ) P = (u,...v) P=(u,...v) 中有 a a a 个第 k k k 位为1的 s s s,有 b b b 个第 k k k 为0 的 s s s,则对答案的贡献为 a × b × 2 k a \times b \times 2^k a×b×2k 。所以需要维护每一位的 01 数量,也就是 1 的数量。
对于修改操作,如果修改边 ( u , v ) (u,v) (u,v) ,不妨有 d e p u > d e p v dep_u > dep_v depu>depv , s s s 受影响的节点一定位于子树 u u u 内。依次考虑每一位的影响。对于第 k k k 位,如果新边权和旧边权相同,则不会产生影响;如果不同,则原来的1变成0,原来的0变成1。
细节可以看代码,时间复杂度为 O ( 10 × n l o g n ) \mathcal{O(10\times nlog n)} O(10×nlogn)
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 3e4+10;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
int n, q;
int head[maxn], tot;
struct edge{
int to, nxt, w;
}e[maxn<<1];
int dep[maxn], siz[maxn], fa[maxn], son[maxn], top[maxn];
int dfn[maxn], dfntot, pre[maxn];
int s[maxn], a[maxn];
struct sgt{
int cnt[12];
int tag[12];
}t[maxn<<2];
struct node{
int cnt[12];
node(){
memset(cnt, 0, sizeof(cnt));
}
node operator + (const node &b) const{
node res;
for(int i = 0; i <= 10; i++)
res.cnt[i] = cnt[i] + b.cnt[i];
return res;
}
};
void add(int a, int b, int c){
e[++tot].nxt = head[a];
e[tot].to = b;
e[tot].w = c;
head[a] = tot;
}
void dfs1(int u, int p){
dep[u] = dep[p] + 1;
siz[u] = 1;
fa[u] = p;
for(int i = head[u]; i; i = e[i].nxt){
int v = e[i].to;
if(v == p)
continue;
s[v] = s[u] ^ e[i].w;
a[v] = e[i].w;
dfs1(v, u);
siz[u] += siz[v];
if(siz[v] > siz[son[u]])
son[u] = v;
}
}
void dfs2(int u, int tp){
top[u] = tp;
dfn[u] = ++dfntot;
pre[dfntot] = u;
if(son[u])
dfs2(son[u], tp);
for(int i = head[u]; i; i = e[i].nxt){
int v = e[i].to;
if(v == fa[u] || v == son[u])
continue;
dfs2(v, v);
}
}
ll qpow(ll a, ll b){
ll res = 1;
while(b){
if(b&1)
res *= a;
b = b >> 1;
a *= a;
}
return res;
}
int ls(int x){return x << 1;}
int rs(int x){return x << 1 | 1;}
void pushup(int k){
for(int i = 0; i <= 10; i++)
t[k].cnt[i] = t[ls(k)].cnt[i] + t[rs(k)].cnt[i];
}
void build(int k, int l, int r){
memset(t[k].cnt, 0, sizeof(t[k].cnt));
memset(t[k].tag, 0, sizeof(t[k].tag));
if(l == r){
int x = s[pre[l]];
for(int i = 0; i <= 10; i++){
if(x & (1 << i))
t[k].cnt[i]++;
}
return;
}
int mid = (l+r) >> 1;
build(ls(k), l, mid);
build(rs(k), mid+1, r);
pushup(k);
}
void pushdown(int k, int l, int r){
int mid = (l+r) >> 1;
for(int i = 0; i <= 10; i++){
if(!t[k].tag[i])
continue;
t[ls(k)].cnt[i] = (mid-l+1) - t[ls(k)].cnt[i];
t[rs(k)].cnt[i] = (r-mid) - t[rs(k)].cnt[i];
t[ls(k)].tag[i] ^= 1;
t[rs(k)].tag[i] ^= 1;
t[k].tag[i] = 0;
}
}
void modify(int k, int l, int r, int x, int y, int pos){
if(x <= l && y >= r){
t[k].tag[pos] ^= 1;
t[k].cnt[pos] = (r - l + 1) - t[k].cnt[pos];
return;
}
pushdown(k, l, r);
int mid = (l+r) >> 1;
if(x <= mid)
modify(ls(k), l, mid, x, y, pos);
if(y > mid)
modify(rs(k), mid+1, r, x, y, pos);
//pushup(k);
for(int i = 0; i <= 10; i++)
t[k].cnt[i] = t[ls(k)].cnt[i] + t[rs(k)].cnt[i];
}
node query(int k, int l, int r, int x, int y){
node res;
if(x <= l && y >= r){
for(int i = 0; i <= 10; i++)
res.cnt[i] = t[k].cnt[i];
return res;
}
pushdown(k, l, r);
int mid = (l+r) >> 1;
if(x <= mid){
node tmp = query(ls(k), l, mid, x, y);
res = res + tmp;
}
if(y > mid){
node tmp = query(rs(k), mid+1, r, x, y);
res = res + tmp;
}
return res;
}
node query_zero(node x, int y){
node res;
for(int i = 0; i <= 10; i++)
res.cnt[i] = y - x.cnt[i];
return res;
}
int geti(int x, int i){
if(x & (1 << i))
return 1;
else
return 0;
}
void change(int u, int v, int w){
int x = (dep[u] > dep[v] ? u : v);
int p = a[x];
for(int i = 0; i <= 10; i++){
if(geti(w, i) != geti(p, i))
modify(1, 1, n, dfn[x], dfn[x] + siz[x] - 1, i);
}
a[x] = w;
}
void query_res(int u, int v){
node res_one;
node res_zero;
while(top[u] != top[v]){
if(dep[top[u]] < dep[top[v]])
swap(u, v);
node tmp = query(1, 1, n, dfn[top[u]], dfn[u]);
res_one = res_one + tmp;
res_zero = res_zero + query_zero(tmp, dfn[u] - dfn[top[u]] + 1);
u = fa[top[u]];
}
if(dep[u] < dep[v])
swap(u, v);
node tmp = query(1, 1, n, dfn[v], dfn[u]);
res_one = res_one + tmp;
res_zero = res_zero + query_zero(tmp, dfn[u] - dfn[v] + 1);
ll res = 0;
for(int i = 0; i <= 10; i++){
res += res_one.cnt[i] * res_zero.cnt[i] * qpow(2, i);
}
cout << res << endl;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> q;
for(int i = 1; i < n; i++){
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
add(b, a, c);
}
dfs1(1, 0);
dfs2(1, 1);
build(1, 1, n);
for(int i = 1; i <= q; i++){
int op, u, v, w;
cin >> op >> u >> v;
if(op == 1){
query_res(u, v);
}
else if(op == 2){
cin >> w;
change(u, v, w);
}
}
return 0;
}
P4315 月下“毛景树”
题意:
边有边权。支持四种操作:
- 修改边权为 w w w
- 修改路径上边权为 w w w
- 路径上边权增加 w w w
- 询问路径上边权最大值
解析:
对于边权,首先转换成点权。除根节点以外,每个节点有唯一的父节点,所以 u u u 的点权为 u u u 与 f a ( u ) fa(u) fa(u) 之间的边权。
有两种修改操作,一种是“推平”,一种是加。所以线段树需要维护两个标记。注意到,如果有推平操作,之前的加就无效了,在pushdown的时候,把加标记清零。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 1e5+10;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
inline int ls(int x){return x << 1;}
inline int rs(int x){return x << 1 | 1;}
struct sgt{
int v;
int tag;//推平
int lazy;//懒
}t[maxn<<2];
struct edge{
int to, nxt, w;
}e[maxn<<1];
struct node{
int fr, to, w;
node(int fr, int to, int w) : fr(fr), to(to), w(w){}
};
vector<node> edg;
int head[maxn], tot;
int dep[maxn], top[maxn], siz[maxn], fa[maxn], son[maxn];
int dfn[maxn], pre[maxn], dfntot;
int a[maxn];
int n;
void add(int a, int b, int c){
e[++tot].nxt = head[a];
e[tot].to = b;
e[tot].w = c;
head[a] = tot;
}
void dfs1(int u, int p){
dep[u] = dep[p] + 1;
siz[u] = 1;
fa[u] = p;
for(int i = head[u]; i; i = e[i].nxt){
int v = e[i].to;
if(v == p)
continue;
a[v] = e[i].w;
dfs1(v, u);
siz[u] += siz[v];
if(siz[v] > siz[son[u]])
son[u] = v;
}
}
void dfs2(int u, int tp){
dfn[u] = ++dfntot;
pre[dfntot] = u;
top[u] = tp;
if(son[u])
dfs2(son[u], tp);
for(int i = head[u]; i; i = e[i].nxt){
int v = e[i].to;
if(v == fa[u] || v == son[u])
continue;
dfs2(v, v);
}
}
void pushup(int k){
t[k].v = max(t[ls(k)].v, t[rs(k)].v);
}
void pushdown(int k){
if(t[k].tag >= 0){
t[ls(k)].lazy = t[rs(k)].lazy = 0;
t[ls(k)].v = t[ls(k)].tag = t[rs(k)].v = t[rs(k)].tag = t[k].tag;
t[k].tag = -1;
}
if(t[k].lazy){
t[ls(k)].lazy += t[k].lazy;
t[rs(k)].lazy += t[k].lazy;
t[ls(k)].v += t[k].lazy;
t[rs(k)].v += t[k].lazy;
t[k].lazy = 0;
}
}
void build(int k, int l, int r){
t[k].lazy = 0;
t[k].tag = -1;
if(l == r){
t[k].v = a[pre[l]];
return;
}
int mid = (l+r) >> 1;
build(ls(k), l, mid);
build(rs(k), mid+1, r);
pushup(k);
}
void modify(int k, int l, int r, int x, int y, int w){ //推平
if(x <= l && y >= r){
t[k].v = w;
t[k].tag = w;
t[k].lazy = 0;
return;
}
int mid = (l+r) >> 1;
pushdown(k);
if(x <= mid)
modify(ls(k), l, mid, x, y, w);
if(y > mid)
modify(rs(k), mid+1, r, x, y, w);
pushup(k);
}
void update(int k, int l, int r, int x, int y, int w){ //区间加
if(x <= l && y >= r){
t[k].v += w;
t[k].lazy += w;
return;
}
int mid = (l+r) >> 1;
pushdown(k);
if(x <= mid)
update(ls(k), l, mid, x, y, w);
if(y > mid)
update(rs(k), mid+1, r, x, y, w);
pushup(k);
}
ll query(int k, int l, int r, int x, int y){
if(x <= l && y >= r)
return t[k].v;
pushdown(k);
int mid = (l+r) >> 1;
ll res = -1;
if(x <= mid)
res = max(res, query(ls(k), l, mid, x, y));
if(y > mid)
res = max(res, query(rs(k), mid+1, r, x, y));
return res;
}
void Change(int k, int w){
node s = edg[k-1];
int u = s.fr;
int v = s.to;
if(fa[v] != u)
swap(u, v);
modify(1, 1, n, dfn[v], dfn[v], w);
}
void Cover(int u, int v, int w){
while(top[u] != top[v]){
if(dep[top[u]] < dep[top[v]])
swap(u, v);
modify(1, 1, n, dfn[top[u]], dfn[u], w);
u = fa[top[u]];
}
if(dep[u] < dep[v])
swap(u, v);
modify(1, 1, n, dfn[v]+1, dfn[u], w);
}
void Add(int u, int v, int w){
while(top[u] != top[v]){
if(dep[top[u]] < dep[top[v]])
swap(u, v);
update(1, 1, n, dfn[top[u]], dfn[u], w);
u = fa[top[u]];
}
if(dep[u] < dep[v])
swap(u, v);
update(1, 1, n, dfn[v]+1, dfn[u], w);
}
void Max(int u, int v){
ll res = -1;
while(top[u] != top[v]){
if(dep[top[u]] < dep[top[v]])
swap(u, v);
res = max(res, query(1, 1, n, dfn[top[u]], dfn[u]));
u = fa[top[u]];
}
if(dep[u] < dep[v])
swap(u, v);
res = max(res, query(1, 1, n, dfn[v]+1, dfn[u]));
cout << res << endl;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n;
for(int i = 1; i < n; i++){
int a, b, c;
cin >> a >> b >> c;
edg.push_back(node(a, b, c));
add(a, b, c);
add(b, a, c);
}
dfs1(1, 0);
dfs2(1, 1);
build(1, 1, n);
string op;
int k, w, u, v;
while(1){
cin >> op;
if(op == "Stop")
break;
else if(op == "Change"){
cin >> k >> w;
Change(k, w);
}
else if(op == "Cover"){
cin >> u >> v >> w;
Cover(u, v, w);
}
else if(op == "Add"){
cin >> u >> v >> w;
Add(u, v, w);
}
else if(op == "Max"){
cin >> u >> v;
Max(u, v);
}
}
return 0;
}