C++实现动态规划之0-1背包问题

本文介绍了使用C++实现0-1背包问题的动态规划解决方案。0-1背包问题是一个经典的优化问题,目标是最大化背包中物品的总价值,而物品只能完全放入或完全不放入背包。文章提供了问题描述、代码实现和运行结果。
摘要由CSDN通过智能技术生成

问题描述:

0-1背包问题:给定n种物品和一背包,物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大?

在选择装入背包的物品时,对每种物品i只有两种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。因此,该问题称为0-1背包问题。

用动态规划解决问题的核心思想就是建立图表,这里就不展示了。

代码实现:

#include <iostream>

using namespace std;

//比较两个数的大小,返回较大的数
int max(int a,int b)
{
    if(a >= b)
        return a;
    else
        return b;
}
//01背包动态规划算法
int KnapSack(int C, int n, int w[], int v[])
{
	int V[n+1][C+1]; 
    for(int i = 0; i <= n; i++) //初始化第0列 
    {
        V[i][0] = 0;
    }
    for(int j = 0; j <= C; j++) //初始化第0行 
    {
        V[0][j] = 0;
    }
    //计算第i行,进行第i次迭代
    for(int i = 1; i <= n; i++)
    {
        for(int j = 1; j <= C; j++)
        {
            if(j <
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俊杰杰杰_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值