语言模型是自然语言处理的关键, 而机器翻译是语言模型最成功的基准测试。
因为机器翻译正是将输入序列转换成输出序列的 序列转换模型(sequence transduction)的核心问题。
机器翻译(machine translation)指的是 将序列从一种语言自动翻译成另一种语言。
统计机器翻译(statisticalmachine translation)涉及了 翻译模型和语言模型等组成部分的统计分析
基于神经网络的方法通常被称为 神经机器翻译(neuralmachine translation)
用于将两种翻译模型区分开来。
机器翻译的数据集是由源语言和目标语言的文本序列对组成的,要一种完全不同的方法来预处理机器翻译数据集.
import os
import torch
from d2l import torch as d2l
下载和预处理数据集
下载一个由Tatoeba项目的双语句子对 组成的“英-法”数据集,数据集中的每一行都是制表符分隔的文本序列对, 序列对由英文文本序列和翻译后的法语文本序列组成。
在这个将英语翻译成法语的机器翻译问题中, 英语是源语言(source language), 法语是目标语言(target language)。
# 下载和预处理数据集
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip',
'94646ad1522d915e7b0f9296181140edcf86a4f5')
def read_data_nmt():
"""载入 “英语-法语” 数据集 """
data_dir = d2l.download_extract('fra-eng')
with open(os.path.join(data_dir, 'fra.txt'), 'r', encoding='utf-8') as f:
return f.read()
raw_text = read_data_nmt()
print(raw_text[:75])
下载数据集后,原始文本数据需要经过几个预处理步骤。 例如,我们用空格代替不间断空格(non-breaking space), 使用小写字母替换大写字母,并在单词和标点符号之间插入空格。
# 几个预处理步骤
def preprocess_nmt(text):
"""预处理 “英语-法语” 数据集"""
def no_space(char, prev_char):
return char in set(',.!?') and prev_char != ' '
text = text.replace('\u202f', ' ').replace('\xa0',' ').lower()
out = [
' ' + char if i > 0 and no_space(char, text[i - 1]) else char
for i, char in enumerate(text)]
return ''.join(out)
text = preprocess_nmt(raw_text)
print(text[:80])
词元化
在机器翻译中,我们更喜欢单词级词元化 (最先进的模型可能使用更高级的词元化技术)。
下面的tokenize_nmt函数对前num_examples个文本序列对进行词元, 其中每个词元要么是一个词,要么是一个标点符号。 此函数返回两个词元列表:source和target:
# 词元化
def tokenize_nmt(text, num_examples=None):
"""词元化 “英语-法语” 数据数据集 """
source, target = [], []
for i, line in enumerate(text.split('\n')):
if num_examples and i > num_examples:
break
parts = line.split('\t')
if len(parts) == 2:
source.append(parts[0].split(' ')) # 英语
target.append(parts[1].split(' ')) # 法语
return source, target
source, target = tokenize_nmt(text)
source[:6], target[:6]
# 绘制每个文本序列所包含的标记数量的直方图,根据句子长度做的直方图
d2l.set_figsize()
_, _, patches = d2l.plt.hist([[len(l)
for l in source], [len(l) for l in target]],
label = ['source','target'])
for patch in patches[1].patches:
patch.set_hatch('/')
d2l.plt.legend(loc='upper right')
词表
由于机器翻译数据集由语言对组成, 因此我们可以分别为源语言和目标语言构建两个词表。
使用单词级词元化时,词表大小将明显大于使用字符级词元化时的词表大小。
# 词汇表
src_vocab = d2l.Vocab(source, min_freq=2,
reserved_tokens=['<pad>','<bos>','<eos>']) # bos 表示句子开始,eos表示句子结束,min_freq=2表示句子长度小于2个就不要了
len(src_vocab)
为了缓解这一问题,这里我们将出现次数少于2次的低频率词元 视为相同的未知(“”)词元。
除此之外,我们还指定了额外的特定词元, 例如在小批量时用于将序列填充到相同长度的填充词元(“”), 以及序列的开始词元(“”)和结束词元(“”)。
这些特殊词元在自然语言处理任务中比较常用。
# 序列样本都有一个固定长度截断或填充文本序列
def truncate_pad(line, num_steps, padding_token):
"""截断或填充文本序列"""
if len(line) > num_steps:
return line[:num_steps]
return line + [padding_token] * (num_steps - len(line))
truncate_pad(src_vocab[source[0]], 10, src_vocab['<pad>'])
加载数据集
在机器翻译中,每个样本都是由源和目标组成的文本序列对, 其中的每个文本序列可能具有不同的长度。
为了提高计算效率,我们仍然可以通过截断(truncation)和 填充(padding)方式实现一次只处理一个小批量的文本序列。
假设同一个小批量中的每个序列都应该具有相同的长度num_steps, 那么如果文本序列的词元数目少于num_steps时, 我们将继续在其末尾添加特定的“”词元, 直到其长度达到num_steps; 反之,我们将截断文本序列时,只取其前num_steps 个词元, 并且丢弃剩余的词元。
这样,每个文本序列将具有相同的长度, 以便以相同形状的小批量进行加载
如前所述,下面的truncate_pad函数将截断或填充文本序列。
# 转换成小批量数据集用于训练
def build_array_nmt(lines, vocab, num_steps):
"""将机器翻译的文本序列转换成小批量"""
lines = [vocab[l] for l in lines]
lines = [l + [vocab['<eos>']] for l in lines] # 每个句子后面加了一个截止符
array = torch.tensor([ truncate_pad(l, num_steps, vocab['<pad>']) for l in lines ])
valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)
return array, valid_len # valid_len 为原始句子的实际长度
现在我们定义一个函数,可以将文本序列 转换成小批量数据集用于训练。
我们将特定的“”词元添加到所有序列的末尾, 用于表示序列的结束。
当模型通过一个词元接一个词元地生成序列进行预测时, 生成的“”词元说明完成了序列输出工作。
此外,我们还记录了每个文本序列的长度, 统计长度时排除了填充词元, 在稍后将要介绍的一些模型会需要这个长度信息
# 训练模型
def load_data_nmt(batch_size, num_steps, num_examples=600):
"""返回翻译数据集的迭代器和词汇表"""
text = preprocess_nmt(read_data_nmt())
source, target = tokenize_nmt(text, num_examples)
src_vocab = d2l.Vocab(source, min_freq=2,
reserved_tokens=['<pad>','<bos>','<eos>'])
tgt_vocab = d2l.Vocab(target, min_freq=2,
reserved_tokens=['<pad>','<bos>','<eos>'])
src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)
tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)
data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)
data_iter = d2l.load_array(data_arrays, batch_size)
return data_iter, src_vocab, tgt_vocab
训练模型
最后,我们定义load_data_nmt函数来返回数据迭代器, 以及源语言和目标语言的两种词表。
# 读出 “英语-法语” 数据集中第一个小批量数据
train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
for X, X_valid_len, Y, Y_valid_len in train_iter:
print('X:', X.type(torch.int32))
print('valid lengths for X:', X_valid_len)
print('Y:', Y.type(torch.int32))
print('valid lengths for Y:', Y_valid_len)
break
小结
机器翻译指的是将文本序列从一种语言自动翻译成另一种语言。
使用单词级词元化时的词表大小,将明显大于使用字符级词元化时的词表大小。
为了缓解这一问题,我们可以将低频词元视为相同的未知词元。
通过截断和填充文本序列,可以保证所有的文本序列都具有相同的长度,以便以小批量的方式加载。