- 博客(236)
- 资源 (1)
- 收藏
- 关注
原创 DCNV3
self.dcnv3 = DCNv3_pytorch(ouc, kernel_size=k, stride=s, group=g, dilation=d) # pytorch版本。#self.dcnv3 = DCNv3(ouc, kernel_size=k, stride=s, group=g, dilation=d) # c++版本。DCNv3_pytorch这个改一下。
2024-02-21 18:12:12 1013
原创 树莓派与vnc的错误 树莓派自启vnc虚拟桌面
1.vnc一直无法启动vncserver-virtual -RandR=1920*1280。删除xstartup 复原树莓派vnc状态。
2024-02-12 15:39:24 883
原创 Android studio打开md无法显示md渲染问题
android studio开发无法选择markdown渲染功能的问题。选择带JCEF的 可以选最新的java版本。原因是java runtime出了问题。
2024-02-04 18:05:28 675
原创 No toolchains found in the NDK toolchains folder for ABI with prefix: arm-linux-androideabi
build.gradle文件。
2023-11-24 20:12:30 474
原创 cuda追踪trace有问题可以用torch.jit.trace(model,imgs)指令调试
torch.jit.trace(model,imgs)
2023-08-20 14:38:38 251
原创 Expected all tensors to be on the same device, but found at least two devices, cuda:1 and cuda:0!
nn.DataParallel单机多卡 yolo相关。
2023-08-11 13:39:19 450
原创 leetcode日记
为什么哈希是o(1) 因为哈希存储相当于存在一个数组 哈希冲突解决存放数据的方法 哈希函数找出值得下标 可能是5 可能是6次甚至更多 但是远小于n 所以o(1)级别。哈希冲突 o(n) 里面一次是o(1) 直接查哈希 containskey。暴力算法两次循环 o(n^2) 里面一次仍需要循环但初始值为外面循环+1。解法有暴力算法和哈希冲突算法。
2023-07-09 19:04:11 90
原创 Yolo系列读后感总结
讲解视频非常少 但是质量也还行,代码复现少而且报错一堆,特别是二作复现的一堆bug,权重文件仓库全过期了,先detect也没办法,搞了三四天只是看了看论文就算了 直接跳yolov5了 挣扎在代码上没什么意义 整体资源比Yolov2还差。讲解视频很多 讲的都不咋地 个人认为只有一两个能看,代码复现很少,大家估计都去复现yolov3了,少而且年代久远 报错很多.硬着头皮看了5天。跟v1一样 讲解视频挺多的 因为过去用的比较多吧 代码复现也很不错。讲解视频很多 讲的都很好 也有复现,代码写得很通俗易懂。
2023-05-23 18:31:38 119
原创 Yolov4 需要修改
模型要下载darknet的yolov4.weights。cfg中use darknet设置为false。#140开始 去掉float的内容。
2023-05-20 16:48:15 124
原创 losses
w * torch.log(1.0 + absolute_x / epsilon), #a张量。(w>absolute_x), #条件。absolute_x - c #b张量。torch.where实现了条件下多维a,b两段补充。
2023-05-19 16:45:39 103
原创 yolov3笔记
方法返回的是原始数据集中的样本。但是,你可以在子类中重写。加载数据时,它会调用数据集对象(例如。方法来获取数据样本。方法,以实现自定义的数据输出。
2023-05-08 14:18:33 96
原创 yolov2 笔记
是 Python 内置变量之一,它用于获取当前 Python 脚本的文件名(包括完整路径),并将其作为字符串返回。如果 Python 脚本是从交互式解释器中执行的,则。im.db文件返回'C:\\Pro\\pythonProject\\yolov2.pytorch-tztztztztz\\dataset\\imdb.py'
2023-05-05 14:50:41 71
原创 Yolov1 源码讲解 voc.py
读取文本分割内容放进self.paths, self.boxes, self.labels = [], [], [] 读的都是原始内容。坐标格式(X0,Y0,X1,Y1)其中X0,Y0是左上角的坐标,X1,Y1是右下角的坐标。1.mean_rgb是voc2007专用的均值。voc2007分别是这样的。
2023-05-04 18:43:29 849
原创 Yolo v1 笔记
(纯猜想)折衷情况,两者有交集但是交集部分不多,作者想让这时候的预测框bbox置信度学习逼近为IOU的值,因为预测框bbox在xywh上虽然与真实框有差距可以用数字来表示,但是不够直观,作者决定用预测框bbox与真实框的IOU作为此时预测框bbox该有百分之多少可以值得信赖,也就是置信度。但实际情况上面说了,还不如用1稳定,后面估计作者也放弃了,折衷情况用iou模拟不好,不如直接逼近1,也就是两者直接重合的情况。由1和2项让bbox检测框逐渐学习到真实框的位置,位置上逼近。1和2项,让xy,wh更拟合。
2023-04-24 07:20:55 356
原创 yolov3 pytorch 关于目录与绝对路径的问题
config 的coco.data custom.data yolov3。直接创建在工程目录下 比如 pytorchyolov3文件夹下。/data就是/pytorchyolov3/data 这样子。直接创建在用户名目录下的文件夹 即打开左栏的主目录的地方。使用open('a.txt','w') 可以快速定位不同。比如用pycharm 跟ide应该没有什么区别。根据需求不同可以改数据集和其他文件路径。/data就是/用户名/data。
2023-04-22 18:18:11 717
原创 锚框+ssd v2 整合笔记
只看Wa’和Ha’就行,Wa’是值以W和Wa为标准的从0到1归一化后的值, Ha’只与H和Ha有关,所以Wa’和Ha’的值没直接比较关系,比如都为0.5的时候不能直接比较。c2.不为正方形时候,等于r*w/h ,为了让c2与c1相等 Wa/ha=(ws✔r)/(hs/✔r)=r*w/h, 让Wa需要乘h/w,令结果也等于r。此处s是长宽缩放比不再是面积的了,宽高比r变成了归一化后的对比。c1.所以当输入图像为正方形的时候锚框真实宽高比是Wa/ha=(ws✔r)/(hs/✔r)=r*w/h=r。
2023-04-17 10:20:26 306
原创 ssd 笔记与代码
这句话的意思是 假如最终输出到一个值 hwq个需要hwq个参数 比如从x_1*w_1+x_2*w_2+..x_hwq*w_hwq 所以需要hwq个参数->卷积层。1.那么我们需要对ℎwq个锚框进行分类。如果使用全连接层作为输出,很容易导致模型参数过多。
2023-04-13 14:20:01 97
原创 项目1新知识
yolo3的数据集处理也是一大亮点,由于yolo3对数据集的输入有要求,指定的照片输入大小必须是416,所有对于不满足照片的大小有一系列的操作,如果直接resize操作,将直接损失照片信息,网络在学习分类的过程还要适应照片尺寸的问题,导致训练效果不佳,在yolo3中是先进行高和宽的调整一样大,在进行上采样的resize,同时要修改label的坐标位置,随机水平翻转,再一次随机变化大小,之后再变化到416的大小尺寸作为输入。最大池化的相反过程,对应于最大值的地方填写最大值,其他位置补0。
2023-04-06 18:21:21 293
原创 深度学习复习 新知识点
3.print(z.sum())#所有数值的总和 print(z.numel())#所有数值的个数。2.cat dim=0在行叠一起 行多了很多 dim=1 列堆起来 列多了很多。1.x*y是按元素乘 x**y也是。
2023-04-05 14:10:13 386
原创 9.7. 序列到序列学习(seq2seq) 实现机器翻译 英语翻译法语
这时候是预测模式,我们不知道Y是什么,所以从做dec_X的第一个值,与states[-1]放进去,得到第一个预测值y1(首先是得到o1,decoder内部经过dense层合并特征之后才是y1)和h1(解码器处理后的第一个状态),之后将y1和h1放进去得到y2和h2,一直循环直到得到的yn是,这时候就结束了。tgt_vocab法语词典,用作解码器词源并作为Y(强制教学后得到dec_X)src_vocab英语词典,用作编码器词源并作为enc_X。稍后补充注意力机制版本。
2023-04-02 00:34:42 571
原创 注意力评分函数 笔记
得到评分之后,根据评分softmax归一化让每一个query的评分变小,让数据变小.同时得到在整体query的占比,也变成了注意力权重。用a函数算出key与query的注意力评分(类似于距离,距离太远注意力应该少点,近的应该放近一点),2.使用注意力权重,乘以所有的值value,和求和后得到非求和平均的函数拟合值,输出出去。3.拟合值表现为注意力重点放在权重高的地方,而不再是所有地方全都加起来平均.4.拟合值全求出来之后连线就是拟合出来的f(x) 函数。1.键是key 查询是query。
2023-03-29 19:37:48 682
原创 注意力汇聚 笔记
4.我们将真实x复制50列 就是说 某一行所有列全部相同,每一行都不同构成(50,50)的大小真实x矩阵。2.随机生成用于测试的一批不连续的 离散的x 并将测试x放进函数中并加入一定的偏差得到测试y。3.1最简单的情况 将所有测试y取平均做一条直线拟合原函数 这也叫平均汇聚 ,结果明显是不行的。结果就是比如a矩阵 第0行所有列数(每一个数都一样),减去x_train这个向量。真实x矩阵(简称a矩阵)再减去要预测的x_train 应用广播机制运算。1.设计出一个函数 给予真实的连续x 得出真实连续的y。
2023-03-29 17:13:03 441
原创 解决误解1
比如正数的话0,1,2,5 0结果无疑是最小的 就单从思想上占比就最小,5是最大。2.softmax中如果说正数是正常结果 负数是倒序。加符号之后顺序直接相反 0是最大。1.softmax与dim。
2023-03-29 15:38:35 152
原创 9.5. 机器翻译与数据集
5.后续用vocab处理, 提前加入reserved_tokens=['<pad>', '<bos>', '<eos>'] 这三个 pad是后续padding用的就是填充的缩写,填充标识符,bos是开始标识符,eos是结束标识符 因为固定'unknown'排第一,下标0,所有这三个正好是下标1,2,3的位置。以数字序列来看就是[9, 4, 3, 1, 1, 1, 1, 1] 9是go,.是4, eos是3 注意是在eos后面加。因为要方便后面算valid有效长度。1.下载文件 读文件。
2023-03-27 15:53:20 611
原创 rnn 代码讲解
W_hq为(512,28) 所以y可以变成(2,28) 意思是从每个x中可以取出对应的下一个字符y,所以维持(2,28) 2个句子中各自的字符。x为输入形状为(batch_size,num_steps) 此处为(2,5) 转置onehote之后变成(5,2,28)h为x没有变换之前的第一维与第二维是隐藏层所以为(2,512) W_hh就为(512,512) 变换成(2,512)为了变形为隐藏层512,W_xh就要(28,512) 于是W_xh*单个x就变成了(2,512)
2023-03-26 20:17:07 985
原创 文本预处理
collections.Counter(tokens)将含重复word的list做成频度字典(java的map) counter。字典的理解就是给word会给你index 所在的位置或者给index给你对应的word。而index是跟频度有关 最多的越前 如果不是第一次还会排在之前保存过的的后面。注意list[3]这种是空格‘ ’,而不是空‘’第一个元素是list但是为空的时候 是不为空的。#按照频度按顺序添加对应的word进去。tokens 现在是双重list。进入count_corpus。
2023-03-23 15:22:12 111
原创 序列模型 笔记
features这里表示从(下标)0-3,1-4,2-5,....,995-998这么多组的x1到x4,组成张量大小为(996,4)的张量,分别映射4,5,6,....,999的值,而这个映射就是labels所以labels = x[tau:].reshape((-1, 1))本文取(600,4),即600组4个x(x1,x2,x3,x4)的值,映射出一个x(x5)的值,也是600组。1.随即生成1000个点 sin出来并加噪声 做成x。3.于是我们需要做出1000个数值中所有的映射值。
2023-03-23 14:09:33 283 1
原创 语义分割和数据集 笔记
比如某个颜色[1,2,3] 对应的colormap2label[1*256^2+2*256^1+3*256^0]=1 说明这个颜色只可能是飞机 于是做出完成voc_colormap2label的赋值。3.VOC_COLORMAP是规定好的哪一类使用什么颜色 比如VOC_COLORMAP[0]是对应的一个类,rgb u8数列为[0,0,0] 对应为 VOC_CLASSES[0]的背景。2.读图片 分别是 jpeg读特征图,label读标签。比如1的位置就是飞机。
2023-03-20 20:07:51 229
原创 【无标题】杂乱笔记1
版权声明:本文为CSDN博主「CuddleSabe」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/qq_15534667/article/details/127991387。这时候的shape为[h*w*5, 4],第一维度也就是一张图片所有的锚框数,第二维度为两个顶点的xy坐标。但我们所需的是半宽半高(因为我们使用半宽半高加上中心点才是顶点坐标)
2023-03-16 13:27:01 90
Closer To You Ramin.mp4
2020-07-13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人