自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(23)
  • 收藏
  • 关注

原创 terminate called after throwing an instance of ‘std::bad_alloc‘ what(): std::bad_alloc

出现False和None的情况就说明该pytorch与CUDA不匹配。五.torch_scatter下载错误。一、遇见这样的问题首先调试一下。二、下载对应版本的cuda。

2024-08-25 14:01:43 232

原创 vue学习--02天

/这里发this是vue实例,由vue管理的函数一定不要写箭头。// data的第二种写法:函数式(组件时必须要用函数式)// name:'张三'// data的第一种写法:对象式。// name:'张三'二、el与data的两种写法。// data的两种写法。//定义了一个别名按键。// el的两种写法。

2024-08-06 20:15:12 600

原创 vue学习-01天

2.声明式编码,让编码人员无需直接操作DOM,提高开发效率。1.采用组件化模式,提高代码复用率,且让代码更好维护。3.使用虚拟DOM+DIFF算法,尽量复用DOM节点。1.在官网下载vue2.js,一般下载生产版本。二.插值语法和指令语法。一.搭建Vue.js。

2024-08-04 22:00:17 230

原创 Vscode前端插件

选择自己想要的浏览器运行代码:在代码页面鼠标右键选择“Open In Other Browsers"或通过快捷键“Shift+ Alt+ B”在浏览器运行代码。安装完就能在代码页面鼠标右键选择“OpenInDefault Browser”或通过快捷键“Alt+ B”在浏览器运行代码。修改同步/自动闭合/完成提示。

2024-08-01 22:05:25 273

原创 以单源点最短路径来分析分支界定(限界)法和回溯法的异同以及特点

以单源点最短路径来分析分支界定法和回溯法的异同以及特点

2024-07-07 17:47:55 996 2

原创 使用 gsutil 下载文件

复现clip-goes-3d中通过GET3D得到渲染图片。一、下载google-cloud-sdk。使用 gsutil 下载文件。

2024-06-04 22:04:12 475

原创 AttributeError: ‘str‘ object has no attribute ‘removeprefix‘

【代码】AttributeError: ‘str‘ object has no attribute ‘removeprefix‘

2024-06-02 21:27:29 234

原创 ImportError: cannot import name ‘is_typeddict‘ from ‘typing_extensions‘ (/root/miniconda3/lib/python

typeguard 依赖于 typing_extensions。确保你安装的 typeguard 版本与 typing_extensions 兼容。

2024-05-26 21:52:45 656

原创 apex下载--AttributeError: module ‘torch.distributed‘ has no attribute ‘_all_gather_base‘

【代码】apex下载--AttributeError: module ‘torch.distributed‘ has no attribute ‘_all_gather_base‘

2024-05-11 11:17:59 209 1

原创 动态规划法---最大字段和:找出数组连续子序列的最大值---返回数组中最长的递增序列长度

2.动态规划法:用空间换时间----自底向上—dp数组。思路:[3,-4,2,1,6,-5,4]

2024-04-08 21:09:09 436 1

原创 求最小公倍数

3.1 math.gcd()求最小公倍数。3.2 直接利用函数math.lcm()三.利用math库中两个函数。二.利用最小公倍数求。

2024-04-08 11:37:51 193 1

原创 深度学习(吴恩达)---minibatchsize、momentum,RMSprop,Adam---加速神经网络收敛速度

在使用自适应学习率算法(如Adam、RMSprop等)时,mini-batch可以更快地适应不同参数的更新需求,因为这些算法依赖于二阶矩(如梯度的方差)的估计,而mini-batch提供了更加稳定的估计。由图片可以知道,时间越远,历史数据对当前数据的影响越小,这是符合自然规律的,所以,指数加权平均算法能够很好的减弱历史数据的影响。如图所示,当β值越大,曲线会越平滑,波动更小,β值越小,噪声越多,更容易受到异常值的影响,但是它可以更好地适应温度变化。使用加权平均,可以使得曲线光滑。

2024-04-02 21:39:41 2102 3

原创 4D:从当前目录跳转至根目录,再从根目录跳转至指定目录

这里使用了pwd命令来获取当前工作目录的绝对路径,然后通过basename命令提取传入参数的文件名部分。最后,将这两个部分拼接起来,得到完整的文件路径。错误一:无法从当前目录跳转至根目录,再从根目录跳转至指定目录如从whl目录跳转至根目录的snowKITTI目录下。在bash文件中修改。

2024-03-29 10:20:34 217 1

原创 plt用法

plt.rcParams[‘font.sans-serif’] = [‘SimHei’] # 指定使用中文字体。plt.rcParams[‘font.sans-serif’] = [‘SimHei’] # 指定使用中文字体。

2024-03-22 16:39:31 227 1

原创 网络归一化(批量归一化)

依次类推,每当数据发生改变,每一层的神经网络平面图也会发生改变,将两张图重合,以第一层神经网络平面图为例,若不进行归一化处理,w的收敛速度将会降低。若将数据进行归一化处理,会得到以下的图,会加快神经网络的收敛速度。这也是为什么要进行网络归一化的处理。数据归一化就是吧需要处理的数据经过处理后限制在需要的一定范围内,归纳统一样本的统计分布性。2.2.2为了避免每一层的样本分布图类似,换成以下公式。2.1为什么要归一化(个人理解,若有错误,请指正)2.2.1把z归一化为均值为0,方差为1的值。

2024-03-16 16:25:03 272 2

原创 AutoDL与Xftp,XShell的连接

获得如下图所示界面,左边为主机内容,右侧为虚拟机内容,经过拖曳,可以将主机内容复制到虚拟机中。如下所示填写,密码在AutoDL登录指令处获得,最后点击连接。点开AutoDL容器实例,复制登录指令,得如下所图。最后根据提示填写密码,出现这个即为连接成功。点开Xftp,点击添加会话。

2024-03-13 21:55:27 649 3

原创 ubuntu下载anaconda遇见的问题

【代码】ubuntu下载anaconda遇见的问题。

2024-03-12 21:42:09 131 1

原创 深度学习(吴恩达)---过拟合、欠拟合、正则化,随机失活和w的初始化,梯度爆炸和梯度消失

采用随机失活算法(dropout)简化神经网络模型,例如在第三层设置keep.prob=0.8表示该隐藏层有20%个隐藏单元会被抛弃。Z=wx+b,当z过大时,y–>1,当z过小时,y–>-1,此时会出现过拟合。④ 缩放未舍弃的节点(不为0)的值,只有进行缩放后才会保证期望值不变。w在python中随机初始化都服从(0,1)正态分布,假设Xi=1,③ 舍弃A1的一些节点(将它的值变为0或False)(1)将w初始化至合理的值。w=0,则会出现对称现象。w过大会出现梯度爆炸,w过小会出现梯度消失。

2023-12-19 21:54:39 638 1

原创 深度学习(吴恩达)---建立一个深度神经网络

建立一个深度神经网络,需要了解下面两张图(上图是针对单个样本而言的)caches=((cache1,activation_cache1)(cache2,activation_cache2)…)用来存储后向传播需要用到的前向传播运算出来的值parameters用来存储W,b值grads用来存储梯度值dW,dA,db一、初始化参数因为初始化的参数要继续参与更新参数等步骤,所以用一个词典parameters将初始化的W,b值保存起来代码如下:def initialize_parameters_

2023-12-18 22:28:30 1050

原创 算法学习---最远采样点算法

*

2023-12-07 09:21:40 279

原创 算法学习——匈牙利算法

解决二分图资源分配问题

2023-11-12 16:25:39 70

原创 Java排序算法

Java排序算法。

2023-10-03 22:00:59 39

原创 对于XN+1或XN*2图灵机进行模拟,任意给定的十进制数a,转换为收缩扩展二进制的编码,再编程模拟此Turing机的运行过程,要求输出从开始运行起的每一步骤的结果。 用C或C++或java或pytho

对于XN+1或XN*2图灵机进行模拟,任意给定的十进制数a,转换为收缩扩展二进制的编码,再编程模拟此Turing机的运行过程,要求输出从开始运行起的每一步骤的结果。 用C或C++或java或python语言实现程序解决问题。import java.util.Scanner; public class yy { public static void main(String args[]) { Scanner reader=new Scanner(System.in ); Syste

2021-04-13 20:40:59 125 1

数据可视化-点云可视化,open3d

随着科技的迅猛发展,三维数据在各个领域中扮演着越来越重要的角色。从建筑设计到自动驾驶,从虚拟现实到机器人导航,三维数据的应用场景广泛而深入。点云作为三维数据的一种表现形式,能够真实地反映物体的形状和空间布局,因而在科学研究和工业应用中得到了广泛的关注和应用。点云数据的高精度和高分辨率,使其在复杂环境建模、目标识别、路径规划等方面具有不可替代的优势。 为了更好地处理和理解这些数据,研究者们开发了多种多样的数据集和工具。其中,ModelNet40和S3DIS数据集为三维数据处理提供了丰富的素材。ModelNet40数据集主要用于三维对象分类和检索,涵盖了40个类别的多种日常物品。S3DIS数据集则聚焦于室内场景的三维语义分割,包含多个真实世界的室内场景,并经过详细的语义标注,为室内场景理解提供了坚实的数据基础。 与此同时,Open3D作为一款强大的开源工具,为点云数据的处理和可视化提供了极大的便利。Open3D不仅支持多种三维数据格式的读写,还提供了丰富的算法库,用于点云配准、语义分割、表面重建等任务。其高效的计算性能和友好的用户界面,使其成为研究和应用三维数据的理想选择。

2024-07-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除