TOPSIS法

TOPSIS法 (Technique for Order Preference by Similarity to Ideal Solution) 可翻译为逼近理想解排序法,国内常简称为优劣解距离法 TOPSIS 法是一种常用的综合评价方法,其能充分利用原始数据的信息, 其结果能精确地反映各评价方案之间的差距。

三点解释

(1)比较的对象一般要远大于两个。(例如比较一个班级的成绩)

(2)比较的指标也往往不只是一个方面的,例如成绩、工时数、课 外竞赛得分等。

(3)有很多指标不存在理论上的最大值和最小值,例如衡量经济增 长水平的指标:GDP增速。

构造计算评分的公式:(X-MIN)/(MAX-MIN)

成绩是越高(大)越好,这样的指标称为极大型指标(效益型指标)。

与他人争吵的次数越少(越小)越好,这样的指标称为极小型指标(成本型指标)。

1.统一指标类型 :

将所有的指标转化为极大型称为指标正向化(最常用)

极小型指标转换为极大型指标的公式:MAX-X

2.标准化处理:

为了消去不同指标量纲的影响, 需要对已经正向化的矩阵进行标准化处理。

标准化处理的计算公式:

 类比只有一个指标计算得分:

 

第一步:将原始矩阵正向化

极小型指标→极大型指标

 

中间型指标 → 极大型指标

 

区间型指标 →极大型指标

 

第二步:正向化矩阵标准化

标准化的目的是消除不同指标量纲的影响。

第三步:计算得分并归一化 

 

 

 

 

### TOPSIS 概述 TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) 是一种常用的多属性决策分析方,旨在通过计算每个备选方案与理想解和负理想解之间的距离来进行评估。这种方能够有效处理多个目标或属性下的复杂决策问题。 #### 方原理 该技术的核心在于识别两个极端点:一个是理想的最优解决方案(正理想解),另一个则是最差情况的代表(负理想解)。对于每一个待评选项而言,会分别测量其到这两个极值位置间的欧氏几何间距,并据此得出相对贴近度指标[^1]。 ```python import numpy as np def topsis_method(decision_matrix, weights, criteria_types): """ :param decision_matrix: 决策矩阵(m×n),其中m表示候选方案数量,n为属性数目. :param weights: 权重向量(n维). :param criteria_types: 属性类型列表('max' 或 'min'). 返回按综合得分排序后的索引序列以及对应的分数。 """ # 向量化标准化 normed_decision_matrix = normalize_matrix(decision_matrix) # 加权乘积模型构建加权规范阵 C=(c_ij)_mxn weighted_normed_dm = apply_weights(normed_decision_matrix, weights) # 计算正/负理想解 positive_ideal_solution, negative_ideal_solution = calculate_ideals(weighted_normed_dm, criteria_types) # 距离计算 distances_to_pis, distances_to_nis = compute_distances(weighted_normed_dm, positive_ideal_solution, negative_ideal_solution) # 综合评价指数 SI_i 的计算 closeness_coefficients = get_closeness_coefficient(distances_to_pis, distances_to_nis) sorted_indices = np.argsort(closeness_coefficients)[::-1] return sorted_indices.tolist(), closeness_coefficients[sorted_indices].tolist() ``` ### 熵权 TOPSIS 详解 熵权 TOPSIS 结合则引入了信息论中的熵概念来自动确定各属性的重要性水平,从而克服传统 Topsis 中人为指定权重可能引发的偏见问题。具体来说,在此过程中先利用熵测度衡量每项特征所携带的信息量大小,再依此调整相应维度上的比重参数[^2]。 #### 实现流程 - **数据预处理**:对原始输入表单执行必要的清理工作,比如缺失值填补、异常检测等操作; - **属性值归一化**:采用合适的方式将不同尺度的数据转换成统一标准形式以便后续比较; - **熵权分配**:基于样本分布特性动态设定各项评判准则在整个体系里占据的比例关系; - **理想解定位**:参照前述说明建立最佳及最糟情形下理论极限坐标系; - **相似性评测**:运用欧式或其他适当距离函数定量刻画实际观测点同上述两者的远近差异程度; - **结果解释**:最终输出排序清单并附带置信区间估计供进一步解读参考[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ADoubleLiu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值