TOPSIS法

TOPSIS法 (Technique for Order Preference by Similarity to Ideal Solution) 可翻译为逼近理想解排序法,国内常简称为优劣解距离法 TOPSIS 法是一种常用的综合评价方法,其能充分利用原始数据的信息, 其结果能精确地反映各评价方案之间的差距。

三点解释

(1)比较的对象一般要远大于两个。(例如比较一个班级的成绩)

(2)比较的指标也往往不只是一个方面的,例如成绩、工时数、课 外竞赛得分等。

(3)有很多指标不存在理论上的最大值和最小值,例如衡量经济增 长水平的指标:GDP增速。

构造计算评分的公式:(X-MIN)/(MAX-MIN)

成绩是越高(大)越好,这样的指标称为极大型指标(效益型指标)。

与他人争吵的次数越少(越小)越好,这样的指标称为极小型指标(成本型指标)。

1.统一指标类型 :

将所有的指标转化为极大型称为指标正向化(最常用)

极小型指标转换为极大型指标的公式:MAX-X

2.标准化处理:

为了消去不同指标量纲的影响, 需要对已经正向化的矩阵进行标准化处理。

标准化处理的计算公式:

 类比只有一个指标计算得分:

 

第一步:将原始矩阵正向化

极小型指标→极大型指标

 

中间型指标 → 极大型指标

 

区间型指标 →极大型指标

 

第二步:正向化矩阵标准化

标准化的目的是消除不同指标量纲的影响。

第三步:计算得分并归一化 

 

 

 

 

TOPSIS是一种用于综合评价的方,可以利用原始数据信息准确地反映各评价方案之间的差距。它由C.L.Hwang和K.Yoon于1981年首次提出,也被称为逼近理想解排序或优劣解距离。 在使用TOPSIS进行评价时,基本的过程包括以下几个步骤: 1. 将原始数据矩阵进行统一指标类型处理,通常是进行正向化处理,以确保各指标的方向一致。 2. 对正向化后的矩阵进行标准化处理,以消除各指标量纲的影响。 3. 找到最优方案和最劣方案,即在有限方案中找到最好和最差的方案。 4. 分别计算每个评价对象与最优方案和最劣方案之间的距离,以确定每个评价对象与最优方案的相对接近程度。 5. 根据计算结果,对评价对象进行排序,以确定其优劣程度。 对于使用Python实现TOPSIS,可以使用NumPy等科学计算库进行矩阵运算和数学计算。具体实现涉及到数据处理、标准化、距离计算等步骤,可以根据实际需求选择合适的方和函数。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [python实现topsis](https://blog.csdn.net/weixin_52300428/article/details/126309794)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ADoubleLiu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值