- 博客(20)
- 收藏
- 关注
原创 复现faster-rcnn(jwyang的pytorch版本)
复现的是github上比较火的wyang版本,本地环境Ubuntu20.04+python3.6+pytorch1.5.1+cuda10.1autodl上的环境是Ubuntu20.04+python3.6+pytorch1.10.0+cuda11.3,两者都成功。
2024-01-07 23:13:58 1374 3
原创 【吴恩达深度学习L4W1】CNN的基础知识
在现在的深度学习框架中,你只需要实现前向传播,框架负责向后传播,所以大多数深度学习工程师不需要费心处理后向传播的细节,卷积网络的后向传递是有点复杂的。所有我就没学了,但还是把代码放在这里。CNN的一些基础:边缘检测、padding、stride、多通道卷积、单层卷积、简单的卷积模型、pooling、手写数字识别的CNN例子、CNN的优点。(2)搭建cnn网络,进行训练和测试,并画出误差下降曲线。2.CNN的应用手势识别(pytorch版)1.使用原生代码实现卷积网络。1.使用原生代码实现卷积网络。
2023-12-24 19:36:47 400 1
原创 超简洁版:git的快速安装与配置
右键就可以看到 git bash 和 git GUI(如下),分别对应git的命令行操作入口和图形化操作入口。点击git Bash,输入git --version,回车。复制好后,进入代码托管平台(以github为例,提前注册号账号),通过头像找到设置,再找到SSH,把那一大串复制到Key的位置就可以了。配置身份就是设置用户名和邮箱,配置好之后可以在本地的.gitconfig文件中查看。输入命令 ssh-keygen -t rsa,然后连按几次回车即可。,直接傻瓜式安装就行了,一路默认。
2023-12-17 22:37:50 105 1
原创 【吴恩达深度学习L2W2】优化算法
如果在此简单数据集上运行更多epoch,则这三种方法都将产生非常好的结果。但是,Adam收敛得更快。构建三层神经网络,使用小批量梯度下降、带冲量的小批量梯度下降、带Adam的小批量梯度下降三种优化算法运行此神经网络,体会不同。1.冲量通常会有所帮助,但是鉴于学习率低和数据集过于简单,其影响几乎可以忽略不计。3.Adam的优势包括:相对较低的内存要求(尽管高于梯度下降和带冲量的梯度下降);3.动量梯度下降、RMSprop、Adam以及学习率衰减。1.批量梯度下降、随机梯度下降、小批量梯度下降。
2023-11-30 21:08:56 83
原创 【吴恩达深度学习L2W1】权重初始化、正则化、梯度检验
用0初始化参数L = len(layers_dims) # 网络层数# 使用断言确保我的数据格式是正确的# 随机初始化参数L = len(layers_dims) # 表示层数的整数# 使用 10 倍缩放, 看看如果把w设置的很大会发生什么# 使用断言确保我的数据格式是正确的# he方法初始化参数np.random.seed(3) # 指定随机种子L = len(layers_dims) # 层数# 使用断言确保我的数据格式是正确的# 用0初始化参数,测试效果。
2023-11-26 11:32:38 99 1
原创 【吴恩达L1W4】构建两层和深层神经网络
打印cost,画出cost下降曲线。4.实现反向传播模块(红色图)。初始化两层和深层的神经网络参数。实现正向传播模块(紫色图)。
2023-11-16 18:45:32 89 1
原创 【吴恩达深度学习L1W3】单隐层神经网络分类二维数据
与L1W2内容基本一致,只不过网络更加复杂,包含了一层隐含层。主要案例是通过单隐层的神经网络分类二维数据。直接上代码,千言万语皆在注释中。
2023-11-14 18:23:44 171
原创 【吴恩达深度学习L1W2】用神经网络思想实现逻辑回归
案例描述:将学习如何建立逻辑回归分类器用来识别猫。通过这个案例逐步了解神经网络的思维方式,同时磨练对深度学习的直觉。直接上代码,千言万语皆在注释中。
2023-11-11 17:11:44 112 1
原创 Pytorch学习日记6:Optimizing Model Parameters
准备好模型和数据后,需要通过训练来优化模型的参数。训练模型是一个迭代的过程,在每个迭代过程中(称为epoch),模型输出预测的结果,计算其预测的误差(损失loss),反向传播得到误差相对于其参数的导数,并使用梯度下降优化这些参数。本文讲解如何优化模型参数。
2023-11-06 21:00:42 74
原创 Pytorch学习日记3:Transforms
1.总体介绍2.ToTensor()3.Lambda Transforms 详解scatter_函数
2023-10-22 21:25:08 52 1
原创 Pytorch学习日记2:Datasets&DataLoaders
从torchvision中加载数据集;自定义的数据集;DataLoader的使用
2023-10-22 17:51:24 63 1
原创 删除数据、空值处理、重复数据处理
一.删除数据二.空值的处理df.fillna(value=None,method=None,axis=0,inplace=False,limit=None,downcast=None,**kwargs)value:填充空值method:{bfill、backfill、ffill、pad、None}bfill、backfill填充前一行、列pad、ffill填充后一行或者是列df.fillna(0) #用常数填充df.fillna(df.mean()) #用列平均值填充..
2021-07-16 15:26:31 418
原创 数据写入和读取(CSV和Excel)
一.数据写入1.我们可以将数据写入文件并进行永久性保存,支持的文件格式为:HTML、CSV、JOSN、Excel。2.to_csv(path_or_buf='指定文件的本地路径',index=false,encoding='utf_8_sig')index=false 就可以不存储DataFrame中的行索引信息。没有encoding='utf_8_sig',打开的文件就是乱码。二.数据的读取1.使用read_csv()、read_excel()可以用来读取文件中的数据第一个参数
2021-07-13 09:21:45 1270
原创 python数据分析之Series和DataFrame的创建
1.简介Pandas是Python最重要的数据分析工具包,是Panel Data Analysis的缩写,也是目前最为流行的Python数据分析工具。最初被作为金融数据分析工具由全球资产管理公司AQR于2008年4月开发,并于2009年底开源出来。Pandas提供的数据结构和函数的设计,将使表格化数据的工作快速、简单、有表现力。所以利用Pandas进行数据操作、预处理、清洗是Python数据分析中的重要技能。Series和DataFrame是它的两种数据结构。2.Series的创建from
2021-07-04 10:10:19 732
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人