Pytorch学习日记6:Optimizing Model Parameters

主要内容:

准备好模型和数据后,需要通过训练来优化模型的参数。训练模型是一个迭代的过程,在每个迭代过程中(称为epoch),模型输出预测的结果,计算其预测的误差(损失loss),反向传播得到误差相对于其参数的导数,并使用梯度下降优化这些参数。本文讲解如何优化模型参数。

一.准备好数据和模型

这一部分是在前面的学习日记中已经详细阐述过,在这里不多说,直接上代码。

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

# 加载数据,可详见学习日记2
training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

# dataloader的使用,可详见学习日记2
train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)


#搭建神经网络,可详见学习日记4
class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

model = NeuralNetwork()

二.超参数

超参数就是可以调整的参数,从而控制优化过程。不同超参数会影响模型的训练和收敛率。主要介绍如下的超参数。

number of epochs:epoch数,即在数据集上迭代的次数。

batch size:批量大小,即在更新参数之前,通过网络传播的数据样本的数量。

learning rate:学习率,在每个批次更新模型参数的程度。较小的值产生缓慢的学习速度,而较大的值可能会导致训练期间的不可预测的行为。

# 超参数
learning_rate = 1e-3    # 学习率
batch_size = 64         # 批量大小
epochs = 5              # epoch数

三.优化Loop

每个epoch有两部分组成:train_loop和test_loop

train_loop:在训练数据集上进行迭代,试图收敛到最佳参数。

test_loop:在测试数据集上进行迭代,检查模型性能是否得到提高。

为了让大家有更清晰的认识,我们首先来看看代码,只需看大框架即可,不需要看train_loop和test_loop具体里面的内容。目前我们准备好了数据、模型、设置好了超参数,定义好了train_loop和test_loop,之后便是初始化损失函数和优化器,最后就调用train_loop和test_loop。我们首先来看看损失函数和优化器这两个概念。

# train_loop:迭代训练数据集,尝试收敛到最佳参数
def train_loop(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)   # 训练数据总量
    for batch, (X, y) in enumerate(dataloader):
        # batch迭代的次数938  每次训练输入的是X[64,1,28,28]的张量  y是真实值
        # 计算预测值
        pred = model(X)
        # 计算误差,输出形式为torch.tensor(1.10200)
        loss = loss_fn(pred, y)

        # 梯度归零
        optimizer.zero_grad()
        # 误差反向传播,产生梯度
        loss.backward()
        # 根据梯度下降,调整参数
        optimizer.step()

        # 每迭代100次,输出损失函数值和遍历进度
        if batch % 100 == 0:
            # 用item()获取值
            loss, current = loss.item(), (batch + 1) * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")


# test_loop:迭代测试数据集,检查模型性能是否改善
def test_loop(dataloader, model, loss_fn):

    size = len(dataloader.dataset)  # 10000
    num_batches = len(dataloader)   # 157
    test_loss, correct = 0, 0

    # 测试时不需要进行梯度计算了
    with torch.no_grad():
        for X, y in dataloader:
            pred = model(X)
            # 累加loss
            test_loss += loss_fn(pred, y).item()
            # pred.argmax(1)返回最大值对应的位置,sum()求批量的正确数
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    # 误差总和/总迭代次数=平均误差
    test_loss /= num_batches
    # 正确数总和/数据总量=准确率
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")


loss_fn = nn.CrossEntropyLoss()   # 初始化损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)  # 初始化SGD优化器(采用随机梯度下降)

# 增加epoch数,跟踪模型性能
epochs = 10
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train_loop(train_dataloader, model, loss_fn, optimizer)   # 执行train_loop
    test_loop(test_dataloader, model, loss_fn)                # 执行test_loop
print("Done!")
损失函数loss_fn

当遇到一些训练数据时,我们未经训练的网络很可能不会给出正确的答案。损失函数衡量的是获得的结果与目标值的不相似程度,它是我们在训练期间想要最小化的损失函数。为了计算损失,我们使用给定数据样本的输入进行预测,并与真实数据标签值进行比较。

用于回归任务的nn.MSELoss(均方误差)

用于分类任务的nn.NLLLoss(负对数似然)

用于分类任务的nn.CrossEntropyLoss(交叉熵损失):结合了nn.LogSoftmax和nn.NLLLoss

其中对于nn.CrossEntropyLoss(交叉熵损失)想要详细了解的,请看这篇文章:

nn.CrossEntropyLoss详解

我们将模型的输出对数传递给 nn.CrossEntropyLoss,它将对对数进行标准化处理并计算预测误差。如下进行损失函数的初始化。

loss_fn = nn.CrossEntropyLoss()   # 初始化损失函数
优化器

优化是在每个训练步骤中调整模型参数以减少模型误差的过程。优化算法定义了这个过程是如何进行的(在这个例子中,我们使用随机梯度下降法Stochastic Gradient Descent)。所有的优化逻辑都被封装在优化器对象中。在这里,我们使用SGD优化器;此外,PyTorch中还有许多不同的优化器,如Adam和RMSProp,它们对不同类型的模型和数据有更好的效果。

我们通过注册需要训练的模型参数来初始化优化器,并传入学习率超参数。

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)  # 初始化SGD优化器(采用随机梯度下降)
train_loop实现过程

接下来介绍一下train_loop的实现过程

def train_loop(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)   # 训练数据总量 60000
    for batch, (X, y) in enumerate(dataloader):
        # batch迭代的次数938  每次训练输入的是X[64,1,28,28]的张量  y是真实值
        # 计算预测值
        pred = model(X)   # pred大小为[64,10]   y大小为[64]
        # 计算误差,输出形式为torch.tensor(1.10200)
        loss = loss_fn(pred, y)

        # 梯度归零
        optimizer.zero_grad()
        # 误差反向传播,产生梯度
        loss.backward()
        # 根据梯度下降,调整参数
        optimizer.step()

        # 每迭代100次,输出损失函数值和遍历进度
        if batch % 100 == 0:
            # 用item()获取值
            print(pred.size())
            print(y.size())
            loss, current = loss.item(), (batch + 1) * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")
print(len(train_dataloader.dataset))  # 训练数据集总量  60000
print(len(train_dataloader))          # 938  938*64=60032
print(len(test_dataloader.dataset))   # 测试数据集总量  10000
print(len(test_dataloader))           # 157  157*64=10048
X,y = next(iter(train_dataloader))
print(len(X))    # 64   batch_size=64
print(X.size())  # [64,1,28,28]
print(y.size())  # [64]

首先看看数据:训练数据总量是60000,batch_size是64,因此batch大小是938;X是[64,1,28,28]的张量,这个不难理解,batch_size是64,一张图像是[1,28,28];y是真实的标签。

其次看看过程,每次训练都要经过这几步:前向传播计算预测值pred;pred和y根据损失函数计算误差;梯度归零;误差向后传播,得到参数梯度;优化器根据梯度调整参数。

关于optimizer.zero_grad()

功能:梯度初始化为零,把loss关于weight的导数变成0

为什么每一轮batch都需要设置optimizer.zero_grad?
根据pytorch中的backward()函数的计算,当网络参量进行反馈时,梯度是被积累的而不是被替换掉。但是在每一个batch时毫无疑问并不需要将两个batch的梯度混合起来累积,因此这里就需要每个batch设置一遍zero_grad。

其他的大家看看注释就明白了。

test_loop实现过程
# test_loop:迭代测试数据集,检查模型性能是否改善
def test_loop(dataloader, model, loss_fn):

    size = len(dataloader.dataset)  # 10000
    num_batches = len(dataloader)   # 157
    test_loss, correct = 0, 0

    # 测试时不需要进行梯度计算了
    with torch.no_grad():
        for X, y in dataloader:
            pred = model(X)
            # 累加loss
            test_loss += loss_fn(pred, y).item()
            # pred.argmax(1)返回最大值对应的位置,sum()求批量的正确数
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    # 误差总和/总迭代次数=平均误差
    test_loss /= num_batches
    # 正确数总和/数据总量=准确率
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

这一部分相对简单一些,这里主要说一下test_loss和correct是如何计算的。

test_loss从0开始每个batch_size算一遍进行累加,item()作用是从包含单个元素的张量中取出该元素值,并保持该元素的类型不变。因为loss_fn输出是torch.tensor(1.0028)这样的形式,是张量。

correct怎么算的:pred大小[64,10],pred.argmax(1) 行中比较找出列中最大值的位置,这样大小就变成了[64,1],将这个类别与真实标签进行比较(==)。如果相等,则返回True,否则返回False。接着,将布尔值转换为浮点数(type(torch.float)),并对所有元素求和(sum())。最后,使用item()方法将结果转换为标量值。

四.完整版可直接运行的代码

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

# 加载数据,可详见学习日记2
training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

# dataloader的使用,可详见学习日记2
train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)


#搭建神经网络,可详见学习日记4
class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

model = NeuralNetwork()


# 超参数
learning_rate = 1e-3    # 学习率
batch_size = 64         # 批量大小
epochs = 5              # epoch数


# train_loop:迭代训练数据集,尝试收敛到最佳参数
def train_loop(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)   # 训练数据总量
    for batch, (X, y) in enumerate(dataloader):
        # batch迭代的次数938  每次训练输入的是X[64,1,28,28]的张量  y是真实值
        # 计算预测值
        pred = model(X)   # pred大小为[64,10]   y大小为[64]
        # 计算误差,输出形式为torch.tensor(1.10200)
        loss = loss_fn(pred, y)

        # 梯度归零
        optimizer.zero_grad()
        # 误差反向传播,产生梯度
        loss.backward()
        # 根据梯度下降,调整参数
        optimizer.step()

        # 每迭代100次,输出损失函数值和遍历进度
        if batch % 100 == 0:
            # 用item()获取值
            loss, current = loss.item(), (batch + 1) * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")


# test_loop:迭代测试数据集,检查模型性能是否改善
def test_loop(dataloader, model, loss_fn):

    size = len(dataloader.dataset)  # 10000
    num_batches = len(dataloader)   # 157
    test_loss, correct = 0, 0

    # 测试时不需要进行梯度计算了
    with torch.no_grad():
        for X, y in dataloader:
            pred = model(X)
            # 累加loss
            test_loss += loss_fn(pred, y).item()
            # pred.argmax(1)返回最大值对应的位置,sum()求批量的正确数
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    # 误差总和/总迭代次数=平均误差
    test_loss /= num_batches
    # 正确数总和/数据总量=准确率
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")


loss_fn = nn.CrossEntropyLoss()   # 初始化损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)  # 初始化SGD优化器(采用随机梯度下降)

# 增加epoch数,跟踪模型性能
epochs = 10
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train_loop(train_dataloader, model, loss_fn, optimizer)   # 执行train_loop
    test_loop(test_dataloader, model, loss_fn)                # 执行test_loop
print("Done!")

'''
print(len(train_dataloader.dataset))  # 训练数据集总量  60000
print(len(train_dataloader))          # 938  938*64=60032
print(len(test_dataloader.dataset))   # 测试数据集总量  10000
print(len(test_dataloader))           # 157  157*64=10048
X,y = next(iter(train_dataloader))
print(len(X))    # 64   batch_size=64
print(X.size())  # [64,1,28,28]
print(y.size())  # [64]
'''

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南风知我意95

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值