矩阵中不重复的元素
一个n行m列的矩阵。
该矩阵的第一行是ab,a(b+1),…,a^(b + m - 1)
第二行是(a+1)b,(a+1)(b+1),…,(a+1)^(b + m - 1)
…
第n行是(a + n - 1)^b,(a + n - 1)^(b+1),…,(a + n - 1)^(b + m - 1)
其中a^b表示a的b次方,问这个矩阵里有多少不重复的数。
例如m = 4, n = 3, a = 2, b = 2。其中24与42是重复的元素,因此不重复的数有11个。
2^2=4, 2^3=8, 2^4=16, 2^5=32
3^2=9, 3^3=27, 3^4=81, 3^5=243
4^2=16, 4^3=64, 4^4=256, 4^5=1024
Input
输入一行包括4个数:m,n,a,b。以空格隔开。 其中2<=m,n,a,b<=100。
Output
输出不重复元素的数量。
Sample Input
4 3 2 2
Sample Output
11
//a^b=x;
//b=loga(x);
//b=log2(x)/log2(a);
//log2(x)=b * log2(a);
#include<iostream>
#include<cmath>
#include<map>
using namespace std;
int main()
{
int m,n,a,b;
while(cin>>m>>n>>a>>b)
{
map<double,bool> v;
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
v[log2(a+i)*(b+j)]=true;
cout<<v.size()<<endl;
}
return 0;
}