1002 数塔取数问题 C语言

该博客介绍了如何使用动态规划和记忆化搜索策略来解决一个经典的计算机科学问题——在一个由正整数组成的三角形中找到从顶部到底部路径的最大和。博主通过给出一个具体的例子,解释了动态规划的实现过程,并展示了一个C语言的代码实现,该代码遍历三角形并存储每个位置的最大和,以避免重复计算,最终输出了最大路径和。
摘要由CSDN通过智能技术生成

动态规划记忆化搜索

  1. 一个高度为N的由正整数组成的三角形,从上走到下,求经过的数字和的最大值。

每次只能走到下一层相邻的数上,例如从第3层的6向下走,只能走到第4层的2或9上。

   5

  8 4

 3 6 9

7 2 9 5

例子中的最优方案是:5 + 8 + 6 + 9 = 28

 收起

输入

第1行:N,N为数塔的高度。(2 <= N <= 500)
第2 - N + 1行:每行包括1层数塔的数字,第2行1个数,第3行2个数......第k+1行k个数。数与数之间用空格分隔(0 <= A[i] <= 10^5) 。

输出

输出最大值

输入样例

4
5
8 4
3 6 9
7 2 9 5

输出样例

28

 

#include<stdio.h>
#include<string.h>
int num[501][501],dp[501][501];
int max(int a,int b)
{
	if(a>b) return a;
	else return b;
}

int main()
{
	int i,j,n;
	scanf("%d",&n);
	for(i=1;i<=n;i++)
	{
		for(j=1;j<=i;j++)
		{
			scanf("%d",&num[i][j]);
		}
	}
	for(i=1;i<=n;i++)
	{
		dp[n][i]=num[n][i];
	}
	for(j=n-1;j>=1;j--)
	{
		for(i=j;i>=1;i--)
		{
			dp[j][i]=max(num[j][i]+dp[j+1][i],num[j][i]+dp[j+1][i+1]);
		}
	}
	printf("%d",dp[1][1]);
	memset(dp,0,sizeof dp);
	memset(num,0,sizeof num);
	return 0;
	
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不是你的奥奥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值