问题引入
假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可得的相应总价物
品,假设物品是水果,水果的编号、单价与重量如下所示:
序号 | 水果类型 | 重量 /kg | 金额 /元 |
---|---|---|---|
1 | 李子 | 4 | 4500 |
2 | 苹果 | 5 | 5700 |
3 | 橘子 | 2 | 2250 |
4 | 草莓 | 1 | 1100 |
5 | 甜瓜 | 6 | 6700 |
请实现“如何最佳的选择物品”实现背包负重允许下装更多的物品?
问题分析
背包问题是关于最佳化的问题,要解最佳化问题可以使用「动态规划」(Dynamic programming),从空集合开始,每增加一个元素就先求出该阶段的最佳解,直到所有的元素加 入至集合中,最后得到的就是最佳解。
以背包问题为例,我们使用两个阵列value与item,value表示目前的最佳解所得之总价,item表 示最后一个放至背包的水果,假设有负重量 1~8的背包8个,并对每个背包求其最佳解。
逐步将水果放入背包中,并求该阶段的最佳解:
放入李子 | 背包 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
负重 | |||||||||
value | 0 | 0 | 0 | 450 | 450 | 450 | 450 | 900 | |
item | - | - | - | 0 | 0 | 0 | 0 | 0 | |
放入苹果 | 背包 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
负重 | |||||||||
value | 0 | 0 | 0 | 450 | 570 | 570 | 570 | 900 | |
item | - | - | - | 0 | 1 | 1 | 1 | 0 | |
放入橘子 | 背包 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
负重 | |||||||||
value | 0 | 225 | 225 | 450 | 570 | 675 | 795 | 900 | |
item | - | 2 | 2 | 0 | 1 | 2 | 2 | 0 |
放入草莓 | 背包 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
负重 | |||||||||
value | 110 | 225 | 335 | 450 | 570 | 680 | 795 | 905 | |
item | 3 | 2 | 3 | 0 | 1 | 3 | 2 | 3 | |
放入甜瓜 | 背包 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
负重 | |||||||||
value | 110 | 225 | 335 | 450 | 570 | 680 | 795 | 905 | |
item | 3 | 2 | 3 | 0 | 1 | 3 | 2 | 3 |
由最后一个表格,可以得知在背包负重8公斤时,最多可以装入9050元的水果,而最后一个装入 的 水果是3号,也就是草莓,装入了草莓,背包只能再放入7公斤(8-1)的水果,所以必须看 背包负重7公斤时的最佳解,最后一个放入的是2号,也就 是橘子,现在背包剩下负重量5公斤(7-2),所 以看负重5公斤的最佳解,最后放入的是1号,也就是苹果,此时背包负重量剩下0公 斤(5-5), 无 法 再放入水果,所以求出最佳解为放入草莓、橘子与苹果,而总价为9050元。
代码实现
说明:采用Java语言,编译环境为IEDA。
//类
class Fruit {
private String name;
private int size;
private int price;
//构造函数
public Fruit(String name, int size, int price){
this.name = name;
this.size = size;
this.price = price;
}
//get方法
public String getName(){
return name;
}
public int getPrice(){
return price;
}
public int getSize(){
return size;
}
}
public class Knapsack {
public static void main(String[] args){
final int MAX = 8;
final int MIN = 1;
int[] item = new int[MAX+1];
int[] value = new int[MAX+1];
Fruit fruits[] = {
new Fruit("李子", 4, 4500),
new Fruit("苹果", 5, 5700),
new Fruit("橘子", 2, 2250),
new Fruit("草莓", 1, 1100),
new Fruit("甜瓜", 6, 6700)
};
for(int i = 0; i < fruits.length; i++){
for(int s = fruits[i].getSize(); s <= MAX; s++){
int p = s - fruits[i].getSize();
int newvalue = value[p] +fruits[i].getPrice();
if(newvalue > value[s]){ // 找到阶段最佳解
value[s] = newvalue; item[s] = i;
}
}
}
System.out.println("物品\t价格");
for(int i = MAX;i >= MIN;i = i - fruits[item[i]].getSize())
{System.out.println(fruits[item[i]].getName()+"\t"+fruits[item[i]].getPrice());}
System.out.println("合计\t" + value[MAX]);
}
}
写在最后:
读两遍下来,如果仍然有不清楚的地方,可在评论区留言。
如果你有其他感到困惑的问题,欢迎留言。