U-Net是一种专为医学图像分割而设计的卷积神经网络(CNN)架构。它于2015年由Olaf Ronneberger、Philipp Fischer和Thomas Brox提出,特别适用于需要精确定位的应用场景,比如生物医学图像处理。以下是U-Net的主要原理和组成部分的详细解释:
U-Net的结构
-
对称的U形结构:U-Net的主要特点是其U型对称结构,由一个“编码器”(收缩路径)和一个“解码器”(扩张路径)组成。
-
编码器(收缩路径):
- 编码器由多个卷积层和最大池化层组成,用于逐渐降低图像的空间分辨率,同时增加特征通道的数量。
- 每个卷积层通常包括两个卷积操作,后接非线性激活函数(如ReLU)。
- 最大池化用于下采样,减少数据的空间维度。
-
解码器(扩张路径):
- 解码器部分的目的是通过上采样过程逐步恢复图像的空间分辨率和细节。
- 这些上采样层通常由转置卷积层实现。
- 在每个上采样步骤之后,将特征图与编码器相对应层的特征图合并(通过跳跃连接),以恢复丢失的空间信息。
-
跳跃连接(Skip Connections):
- U-Net的一个关键特性是其跳跃连接,它将编码器中的特征图与解码器中对应层的特征图连接起来。
- 这有助于在上采样过程中恢复