期刊:IEEE Transactions on Medical Imaging
1. 摘要
激光散斑对比成像(LSCI)被广泛应用于体内局部血流微循环的实时检测和分析由于其非侵入性和出色的时空分辨率。然而,由于病变区域血液微循环结构的复杂性和血管畸变的不规则性,使得LSCI图像的血管分割仍然面临很多困难。此外,LSCI图像数据标注的困难也阻碍了基于监督学习的深度学习方法在LSCI图像血管分割领域的应用。为了解决这些困难,我们提出了一种鲁棒弱监督学习方法,该方法选择阈值组合和处理流程来代替劳动密集型的注释工作来构建数据集的基础真值,并设计了基于UNet++和ResNeXt的深度神经网络FURNet。训练得到的模型实现了高质量的血管分割,在已构造数据集和未知数据集上都能捕获多场景血管特征,具有良好的泛化能力。此外,我们在栓塞治疗前后的肿瘤上验证了这种方法的有效性。这项工作为实现LSCI血管分割提供了新的途径,也在人工智能辅助疾病诊断领域取得了新的应用层面的进展。
关键字:血流,卷积神经网络(CNN),激光散斑对比成像(LSCI),弱监督学习,血管分割。
2. 引言
激光散斑对比成像(laser speckle contrast imaging, LSCI)是一种能够在空间和时间域提取相对血流信息的非侵入性成像技术。它已成为生物医学和分子成像研究[1],[2]中流行的成像方式,如中风[3],偏头痛,视网膜疾病[4]和皮肤病[5]。LSCI可以测量血管直径、密度、流速等微循环参数[6]、[7]、[8]。通过分析LSCI图像,可以了解微循环血管的形态。血管微循环血流中还可观察到炎症、水肿、肿瘤、辐射损伤等病理表现。然而,LSCI图像中存在大量的组织信号噪声,这使得LSCI图像的准确语义分割和血管特征提取成为一项具有挑战性的任务。
血管分割[9],[10]是一个长期发展的医学图像处理任务。目前,主要有两种方法:传统的特征提取方法和基于深度神经网络的方法。
传统的特征提取算法,如区域生长和自适应阈值提取,都是通过先验知识提取特定的特征。这些方法具有速度快的优点,但鲁棒性和泛化能力有限。
近年来,基于卷积神经网络(CNN)的深度学习方法由于其出色的特征提取能力,在图像分割方面得到了巨大的发展[11]。然而,监督深度学习网络模型的性能在很大程度上依赖于数据集的质量,特别是在语义分割方面[12],这需要非常精确的像素标注。一方面,医学图像标注需要专业的医学背景知识。另一方面,手工标注是劳动密集型的,这使得避免观察者之间的认知差异具有挑战性。
尽管对LSCI图像的血管分割已经有了大量的研究,但我们发现仍然存在一些问题。
首先,在标签成本高的情况下,通常会考虑预训练模型。然而,在正常组织区域数据集上的预训练模型在应用于病变图像时会出现明显的性能下降。众所周知,病变区域比正常组织更为复杂。不同病变阶段微循环组织的血管特征有很大的风格差异。因此,为监督学习标记每种病理类型是一件高成本的事情。
此外,由于其独特的成像原理,血流速度和深度信息包含在LSCI图像中,这导致使用传统方法对LSCI图像进行二值化的不合适。如图1所示,二值化后的标注对不同形态的血管没有明显的区分,如慢流血管和非病灶层血管。这实际上是信息的丢失。综上所述,LSCI图像的准确血管分割是非常困难的,我们需要找到一种方法来避免逐像素的标注工作。
图1:LSCI血管图像的一些手工注释结果,A:健康血管中的血管图像;B:复杂区域血管(肿瘤区域血管图像);放大图像是对感兴趣区域内相应区域的放大;虽然健康区血管的标记足够准确,但二值化不能反映LSCI图像的血流速度信息,并且将血流缓慢的血管或其他病灶层的血管标记为相同强度的血管,这被认为是一种信息丢失。而人工对肿瘤区域血管进行标记,则面临着标准基本统一、置信度不合适的问题,难以获得高质量的标记信息。
在这项研究中,我们提出了一种鲁棒的弱监督学习方法,用于复杂微循环血管区域的LSCI图像。该框架在疾病的不同阶段实现了组织区域的有效血管分割,进一步有助于介入栓塞治疗。此外,采用多组阈值组合来处理不同阶段的不同图像样式的图像。然后,对这些图像进行马尔可夫随机场(MRF)收敛。混合两部分图像后,对分割结果进行联合筛选。为了构建具有弱监督信息的LSCI血管分割数据集,我们在处理流程中采用阈值组合选择方法,取代了手工标注的繁琐操作。并利用该数据集训练深度神经网络分割模型。在不同类型的LSCI血管图像上验证了我们的模型性能,结果都很有希望,证明了该方法的泛化能力。该方法无需对LSCI图像数据集进行逐像素标注,即可实现对体表图像的有效血管分割,为LSCI在体内的应用提供了一种高效的方法。在混合数据集上的实验结果表明,与全局阈值分割(GTS)、动态阈值分割(DTS)、K-means聚类和CycleGAN等方法相比,本文方法具有更好的分割性能[53]。以下是本文方法论的主要贡献。
(1)构建兔耳肿瘤模型,进行LSCI实时血管成像,包括健康状态、肿瘤植入后和栓塞治疗后三个不同阶段。不同阶段的形象风格有明显的差异。(栓塞治疗是一种医学手段,主要用于阻断血管以治疗各种病症。具体来说,栓塞治疗通过将栓塞材料注入血管内,形成阻塞,减少或完全切断血液流向特定区域。)
(2)提出了一种弱监督学习与监督学习相结合的LSCI图像分割策略。该方法实现了高性能的分割,避免了传统监督学习中对高质量样本的依赖。
(3)所提出的分割模型能够有效分割具有不同特征的血管图像。在采集的小鼠脑血管图像数据集和CycleGAN生成的LSCI血管图像数据集上验证了模型的鲁棒性。
3. 相关工作
3.1 生物医学光学中的激光散斑对比成像
斑点是由相干光的随机干涉产生的。当相干光与随机散射介质相互作用时,光从介质内的不同位置散射到光电探测器上。散射粒子相对于光电探测器的排列会产生相长干涉和相消干涉[54]。通过使用相机对这些散射光进行成像,可以观察到干扰在空间中随机变化,从而产生随机变化的强度模式,称为散斑。散斑粒子的运动引起干涉波动,在光电探测器上表现为强度变化。散斑图案的时空统计提供了有关散斑粒子运动的数据。此外,可以通过测量和分析物体的时间变化或空间变化来量化物体的运动。通过对散斑进行成像并测量其空间模糊度,可以获得具有高时空分辨率的二维血流图。在血流量增加的区域,斑点图案的强度波动更快,斑点图案在这些区域变得模糊。通过分析散斑强度变化的空间对比,量化图像中的散斑模糊程度,从而得到相对血流的空间图。
LSCI仪器允许非接触式、全视野的组织血流成像,包括视网膜、皮肤和大脑,无需扫描。由于这些区域的微血管通常是浅表的,因此它们特别适合LSCI。全身皮肤灌注监测是LSCI最早的应用之一[14],[15];在啮齿动物背部皮肤褶皱模型中,切除一部分皮肤并插入窗口,LSCI在量化微血管血流方面显着有效[16]。LSCI及相关技术的另一个早期应用是动物和人类视网膜血流的可视化和量化[4]。LSCI已成为应用最广泛的脑血流活体成像方法之一,特别是在正常和患病小动物模型中,包括脑功能激活[17]、中风[3]、肝癌微循环检测[13]等。
3.2 血管的语义分割
图像语义分割是一种旨在为图像中的每个像素分配唯一标签的过程,是计算机视觉领域的重要应用。在医学图像处理中,血管分割是一个热门的任务。针对这一任务已经进行了大量的研究,大致可以分为四类:基于血管增强滤波的算法、基于深度学习的算法、基于可变形模型的算法和基于跟踪的算法。
基于血管增强滤波的方法是通过检测像素周围的局部灰度变化来确定像素是否为血管区域。不同的滤镜有其各自的优点和缺点,因此单一的方法并不能对所有血管图像都有理想的增强效果。由于处理方法有限,许多血管分割算法都采用血管增强滤波作为步进图像预处理[18],[19],[20],[21]。
基于可变形模型的方法的一般原理是初始化一个封闭的曲线或种子点,通过连续的变形或种子点生长进行迭代,改变分割边界,实现血管分割[22],[23],[24]。
基于跟踪的方法首先通过人工定义或基于上述血管增强滤波的方法建立种子点。从种子点开始,迭代过程以血管分割结果或血管中心线树结束,这取决于所应用的约束。根据约束条件的不同,这些算法可分为基于模型的跟踪算法和基于最小代价路径的跟踪算法[25],[26],[27]。
对于基于深度学习的方法,首先要建立血管分割的神经网络模型。然后利用大量的血管图像数据集对模型进行训练。同时,在训练过程中不断更新和优化模型参数,以达到一定的分割精度。根据对标注数据的不同要求,血管分割任务可以分为以下四类:监督学习、半监督学习、弱监督学习和无监督学习。以本文要解决的问题为例,监督方法是指给定的所有训练数据都具有相应的像素级的ground truth,从而使训练过程直接而准确。半监督是指在训练过程中已知数据与部分数据一一对应,部分数据的标签是未知的。弱监督标签指的是训练数据的标签是粗粒度的,甚至不总是正确的。与监督式学习相比,标签的信息量更少,但标注的难度更小。随着深度学习成为人们关注的焦点,基于深度学习的血管和其他医学图像自动分割方法急剧增加[28],[29],[30]。近年来,随着U-Net的引入,医学图像分割越来越受到人们的关注[31]。医学图像分割的最新方法可以概括为基于跳跃连接、残差卷积块[32]、密集卷积块[33]和注意机制[34]的方法。这些方法的共同点是通过改进模块和网络设计来提高分割精度。随着当前计算能力的不断提高,图像的分割精度被推向了一个新的高度。此外,基于transformer的ViT模型[35]在各种与视觉相关的任务中也取得了显著的效果。一些计算机应用程序,如TransUnet[36]、Swin-Transformer[37]、Transformer-Unet[38]等,在计算机任务方面取得了重大进展,包括图像分割。此外,对比学习在无监督学习领域的发展使模型能够学习具有更多类别信息的特征,包括[38]、[39]和[40]中的一些作品。
3.3 LSCI图像处理分析
作为一种能够实时成像的血管成像方式,LSCI图像比计算机断层扫描(CT)、磁共振成像(MRI)和光学相干断层扫描(OCT)等高信噪比图像噪声更大,这使得LSCI图像的分析更具挑战性。目前关于LSCI图像的大部分工作集中在信号增强、降噪和图像中的血管分析上。
1)图像的信号增强与降噪
图像信号的增强和降噪分为两大类方法。一种增强或降噪方法是设计特殊的滤波或定位算子,利用研究者的先验知识计算像素与其周围环境之间的像素间关系。上面提到的这类方法速度很快,可以简单地部署来处理大量图像。然而,当应用于不同的图像数据集或成像模式时,性能会下降,泛化效果会随着数据特征而波动[42],[43]。另一类方法不依赖于人类的先验知识。Perez-Corona等人提出了一种空间定向方法ÿ