关于内积和外积
-
数学形式:
两个量子态向量(右矢)|ψ⟩ 和 |φ⟩ 的内积写作 ⟨φ|ψ⟩,结果是一个复数。-
若用向量表示,|ψ⟩ 是列向量,⟨φ| 是对应的左矢(行向量,共轭转置),内积即为行向量与列向量的乘积(标量)。
-
-
物理意义:
-
内积表示两个量子态的“重叠程度”,模长平方 |⟨φ|ψ⟩|² 是态 |ψ⟩ 在测量后坍缩到 |φ⟩ 的概率。
-
满足共轭对称性:⟨φ|ψ⟩ = ⟨ψ|φ⟩( 表示复共轭)。
-
-
例子:
若 |ψ⟩ = [1, 0]ᵀ(基态),|φ⟩ = [0, 1]ᵀ(激发态),则 ⟨φ|ψ⟩ = 0,表示两态正交,无重叠。
2. 外积(Outer Product)
-
数学形式:
右矢 |ψ⟩ 和左矢 ⟨φ| 的外积写作 |ψ⟩⟨φ|,结果是一个线性算子(矩阵)。-
若 |ψ⟩ 是 n 维列向量,⟨φ| 是 m 维行向量,则外积为 n×m 矩阵。
-
-
物理意义:
-
外积是构造量子算符的基本工具。例如,投影算符 |ψ⟩⟨ψ| 可将任意态投影到 |ψ⟩ 方向。
-
可表示量子态的密度矩阵(纯态时为 |ψ⟩⟨ψ|)。
-
作用于另一个态 |χ⟩ 时,结果为标量 ⟨φ|χ⟩ 乘以 |ψ⟩,即 |ψ⟩⟨φ|χ⟩ = ⟨φ|χ⟩ |ψ⟩。
-
-
例子:
若 |ψ⟩ = [1, 0]ᵀ,⟨φ| = [0, 1],则外积为:特性 内积 外积 结果形式 复数(标量) 矩阵(线性算子) 符号 ⟨φ|ψ⟩ |ψ⟩⟨φ| 物理应用 计算概率、正交性判断 构造投影算符、密度矩阵、演化算符 线性代数 行向量与列向量的点积 列向量与行向量的张量积
QSVT
泛化频谱变换:
QSVT 允许我们对一个通过酉操作(unitary)嵌入的矩阵的奇异值进行任意多项式变换。记得,对于一个矩阵
QSVT 能够将其变换为
其中 P(x)P(x)P(x) 是一个设计好的多项式函数。
-
统一框架下的量子算法设计:
这一方法不仅能实现对矩阵的反演(例如摩尔-彭罗斯伪逆),还可以实现定点振幅放大、量子线性系统求解、以及主成分回归等机器学习任务。实际上,很多传统的量子算法(例如 Hamiltonian 模拟、量子行走、以及部分放大算法)都可被视为 QSVT 的特例。
2. QSVT 的流程概述
假设我们希望对矩阵 A 进行奇异值变换,整个过程大致可以分为以下步骤:
-
构造投影单元编码(Projected Unitary Encoding):
这一部分的目标是把矩阵 A“嵌入”到一个较大的酉矩阵 U的某个子空间内,即写成
其中 Π和 Π 是正交投影算子。一个特殊情况是块编码(block-encoding),即如果 IΠ=Π=∣0⟩⟨0∣⊗I 则 A 就是 U的左上角块。
设计实现奇异值多项式 P(x) 的量子电路:
根据 QSVT 理论,给定一个满足一定条件的奇异值多项式 P(x)(例如要求 P(x)为奇函数,或者偶函数,且在区间 [−1,1]内有 ∣P(x)∣≤1,我们可以构造一个量子电路,该电路在不改变奇异向量的前提下,将原矩阵 A 映射为
P(SV)(A)=WP(Σ)V†,
如果A=WΣV† 为奇异值分解。这通常需要对 U 及其逆反复调用大约 d 次,其中 d 为所用多项式的度数。
电路实现与调用:
电路的构造通常依赖于一系列带有固定角度参数的单量子比特旋转操作(例如 Pauli 旋转或者相位门),这些角度参数经过精心设计,确保电路整体实现了上述多项式 P(x)的作用。整个过程可以看作是利用“量子信号处理”(Quantum Signal Processing)的技术扩展到奇异值的情形。