改变基和不变子空间

        改变基是指在不同的基下对向量或线性变换进行重新表示,一个向量在不同的基下的坐标表示可能不同,但它在向量空间中的实际位置不会改变。

假设我们有向量v在基下B={b1,b2,...bn}下的坐标为[v]B。如果我们想要这个向量表示成基C={c1,c2...cn}下的坐标[V]C,我们需要一个基变换矩阵P。

                                                                [v]C​=P[v]B​

改变基和相似性的关系

  • 改变基会导致线性变换的矩阵表示发生变化,但这个变化是通过相似变换完成的。
  • 当我们将线性变换 T 从基 B 转换到基 C 时,原矩阵 A 通过相似变换 B=P−1APB = P^{-1} A PB=P−1AP 得到新矩阵 B。
  • 相似变换反映了在线性变换本质不变的情况下,不同基的选择带来的表示差异。

 

基(Basis)

向量空间 V 的一组是一个向量集合 {b1,b2,…,bk},满足:

  1. 线性无关:这组向量之间是线性无关的,即不能通过其他向量的线性组合表示其中任意一个向量。
  2. 张成 VVV:这组向量的线性组合可以生成整个向量空间 VVV,即 V=span⁡{b1,b2,…,bk}V = span{b1​,b2​,…,bk​}。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白光白光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值