改变基是指在不同的基下对向量或线性变换进行重新表示,一个向量在不同的基下的坐标表示可能不同,但它在向量空间中的实际位置不会改变。
假设我们有向量v在基下B={b1,b2,...bn}下的坐标为[v]B。如果我们想要这个向量表示成基C={c1,c2...cn}下的坐标[V]C,我们需要一个基变换矩阵P。
[v]C=P[v]B
改变基和相似性的关系
- 改变基会导致线性变换的矩阵表示发生变化,但这个变化是通过相似变换完成的。
- 当我们将线性变换 T 从基 B 转换到基 C 时,原矩阵 A 通过相似变换 B=P−1APB = P^{-1} A PB=P−1AP 得到新矩阵 B。
- 相似变换反映了在线性变换本质不变的情况下,不同基的选择带来的表示差异。
基(Basis)
向量空间 V 的一组基是一个向量集合 {b1,b2,…,bk},满足:
- 线性无关:这组向量之间是线性无关的,即不能通过其他向量的线性组合表示其中任意一个向量。
- 张成 VVV:这组向量的线性组合可以生成整个向量空间 VVV,即 V=span{b1,b2,…,bk}V = span{b1,b2,…,bk}。