计算机视觉与机器学习实验报告

1、二维码识别检测

使用OpenCV相关API实现
主要代码

import cv2 as cv
import numpy as np
src = cv.imread("D:/pythonwork/11.jpg")
cv.imshow("image", src)
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
qrcoder = cv.QRCodeDetector()
codeinfo, points, straight_qrcode = qrcoder.detectAndDecode(gray)
print(points)
print(points[0][0])
result = np.copy(src)
#cv.putText(result,'%s'%codeinfo,tuple(points[2][0]),cv.FONT_HERSHEY_SIMPLEX, 0.8,(0, 0, 255))
cv.drawContours(result, [np.int32(points)], 0, (0, 0, 255), 2)
print("qrcode : %s"% codeinfo)
cv.imshow("result", result)
code_roi = np.uint8(straight_qrcode)
cv.imshow("qrcode roi", code_roi)
cv.waitKey(0)
cv.destroyAllWindows()

实验效果
在这里插入图片描述

2、高斯模糊

实现高斯模糊图像和高斯滤波性能测试
代码实现

import cv2 as cv
import numpy as np
#均值模糊 使图片模糊
def get_mean_burry(image):
cv.imshow('iamge',image)
dst=cv.blur(image,(5,5))
cv.imshow('burry',dst)
src=cv.imread('D:/pythonwork/33.png')
get_mean_burry(src)
cv.waitKey(0)
cv.destroyAllWindows()

实验效果
在这里插入图片描述

3、线性回归

实现简单示例函数
通过代码实现返回一个5*5的对角矩阵

import numpy as np
a = np.eye(5)
a

实验结果
在这里插入图片描述

实现数据集显示的函数
对数据集使用散点图进行可视化

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os

%matplotlib inline
# 数据存储路径
path = 'ex1data1.txt'

# 读入相应的数据文件
data = pd.read_csv(path, header=None,names=['Population','Profit']
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值