前言
目前正在阅读李启虎先生的《声呐信号处理引论》(链接指向科学文库,可放心食用),写点博客作为学习记录,多有不足还望海涵。
声呐系统
声呐是一种利用声波在水中的传播和反射特性,通过电声转换和信息处理进行导航和测距的设备。声波是人类目前掌握的唯一一种能够在水中远距离传播的技术手段。
本节归纳声呐系统的基本结构、声呐方程的定义和主动声纳的信号特征组成。
声呐系统结构
声呐系统的组成与常规通信系统的差异不大,同样是收发结构。
-
发射机:信号发生器 → \to →波束成形 → \to →功率放大 → \to →发射基阵
-
信号发生器: 模拟/数字, C W / L F M \mathrm{CW/LFM} CW/LFM
-
波束成形:给信号一个合适的加权和延时,控制发射机发射声能的集中程度和空间分布情况
-
发射基阵:电声转换的辐射单元的综合
-
-
接收机:接收基阵 → \to →动态范围压缩 → \to →波束成形 → \to →信号处理
-
接收基阵:声电转换的接受单元的综合
-
动态范围压缩:自动增益控制 A G C \mathrm{AGC} AGC与时变增益放大 T V G \mathrm{TVG} TVG
-
声呐方程
声呐方程与无线通信/光纤通信中“通信链路预算”的概念类似。声呐方程总结了声呐工作过程中相关的功率性参数。
声呐类型 | 声呐方程 | 优质因数 |
---|---|---|
主动声呐 | S L − 2 L + T S + G S + G T − N L = D T SL-2L+TS+GS+GT-NL=DT SL−2L+TS+GS+GT−NL=DT | F O M = ( S L + T S − N L + G S + G T − D T ) / 2 FOM=(SL+TS-NL+GS+GT-DT)/2 FOM=(SL+TS−NL+GS+GT−DT)/2 |
被动声呐 | S L − N L − T L + G S + G T = D T SL-NL-TL+GS+GT=DT SL−NL−TL+GS+GT=DT | F O M = S L − N L + G S + G T − D T FOM = SL-NL+GS+GT-DT FOM=SL−NL+GS+GT−DT |
其中:
-
声呐系统决定的参数
S L SL SL:发射时的指标声压,离发射换能器1米处所能接收到的声压。 S L = 171.5 + 10 l g P + D I ( d B ) SL = 171.5+10lgP+DI \quad(dB) SL=171.5+10lgP+DI(dB)
G S GS GS:声呐系统的空间增益。
G T GT GT:声呐系统的时间增益。
D T DT DT:检测阈值,类似灵敏度。
-
目标决定的参数
S L SL SL:辐射噪声源的指标声压级,离辐射源1米处所能接收到的声压。
T S TS TS:目标强度,目标截获声能并将之重新辐射的能力。
-
环境决定的参数
N L NL NL:背景噪声级,自然噪声+混响+舰艇的自噪声。
T L TL TL:传播损失。
主动声呐信号分析
复信号
主动声呐发射的是窄带信号。窄带信号可以采用复包络的形式来形容。
窄带信号的一般形式为
x
(
t
)
=
x
c
(
t
)
c
o
s
2
π
f
0
t
−
x
s
(
t
)
s
i
n
2
π
f
0
t
(1)
x(t) = x_c(t)cos2\pi f_0t-x_s(t)sin2\pi f_0t \tag 1
x(t)=xc(t)cos2πf0t−xs(t)sin2πf0t(1)
定义复包络为
x
~
(
t
)
=
x
c
(
t
)
+
j
x
s
(
t
)
(2)
\tilde{x}(t) = x_c(t) + jx_s(t) \tag 2
x~(t)=xc(t)+jxs(t)(2)
预包络
x
p
(
t
)
=
x
~
(
t
)
e
j
2
π
f
0
t
(3)
x_p(t) = \tilde x(t) e^{j2\pi f_0 t} \tag 3
xp(t)=x~(t)ej2πf0t(3)
则原信号是预包络的实部
x
(
t
)
=
R
e
[
x
p
(
t
)
]
(4)
x(t) = Re[x_p(t)] \tag 4
x(t)=Re[xp(t)](4)
另有
x
p
(
t
)
=
x
(
t
)
+
j
x
^
(
t
)
(5)
x_p(t) = x(t) + j\hat x(t) \tag 5
xp(t)=x(t)+jx^(t)(5)
对于窄带信号 x ( t ) = R e [ x ~ ( t ) e j 2 π f 0 t ] x(t) = \mathrm{Re}[\tilde{x}(t)e^{j2\pi f_0t}] x(t)=Re[x~(t)ej2πf0t],若经过一个线性系统 h ( t ) = R e [ h ~ ( t ) e j 2 π f 0 t ] h(t) = \mathrm{Re}[\tilde{h}(t)e^{j2\pi f_0t}] h(t)=Re[h~(t)ej2πf0t],其输出为 y ( t ) = R e [ y ~ ( t ) e j 2 π f 0 t ] y(t) = \mathrm{Re}[\tilde{y}(t)e^{j2\pi f_0t}] y(t)=Re[y~(t)ej2πf0t],我们可以证明 y ~ ( t ) = x ~ ( t ) ∗ h ~ ( t ) \tilde{y}(t) = \tilde{x}(t)*\tilde{h}(t) y~(t)=x~(t)∗h~(t),这表明我们发送窄带信号时,可以直接对包络进行处理。
我们可以做出以下总结:
信号 | 时域表示 | 频谱 | 频谱特征 | 能量 |
---|---|---|---|---|
实信号 | x ( t ) = a ( t ) c o s [ 2 π f 0 t + ϕ ( t ) ] = R e [ s ( t ) ] x(t) = a(t)\mathrm{cos}[2\pi f_0 t + \phi(t)]=Re[s(t)] x(t)=a(t)cos[2πf0t+ϕ(t)]=Re[s(t)] | X ( f ) = X ∗ ( − f ) X(f) = X^*(-f) X(f)=X∗(−f) | 对称谱 | E E E |
复信号 | s ( t ) = x ( t ) + j x ^ ( t ) = u ( t ) e j 2 π f 0 t s(t) = x(t)+j\hat{x}(t) = u(t)e^{j2\pi f_0 t} s(t)=x(t)+jx^(t)=u(t)ej2πf0t | s ( f ) = { 2 X ( f ) , f ≥ 0 0 , f < 0 s(f)=\begin{cases} 2X(f), f\ge 0\\ 0, \quad\quad f<0 \end{cases} s(f)={2X(f),f≥00,f<0 | 单边谱 | E s = 2 E E_s=2E Es=2E |
复包络 | u ( t ) = a ( t ) e j ϕ ( t ) u(t)=a(t)e^{j\phi(t)} u(t)=a(t)ejϕ(t) | S ( f ) = U ( f − f 0 ) S(f) = U(f-f_0) S(f)=U(f−f0) | 单边谱 | E u = 2 E E_u=2E Eu=2E |
多普勒频移
主动声呐接收的信号的多普勒频移为
Δ
f
=
[
(
c
+
v
1
′
)
(
c
+
v
2
′
)
(
c
−
v
1
′
)
(
c
−
v
2
′
)
−
1
]
f
1
(6)
\Delta f = \left[ \frac{(c+v_1')(c+v_2')}{(c-v_1')(c-v_2')} -1 \right] f_1 \tag 6
Δf=[(c−v1′)(c−v2′)(c+v1′)(c+v2′)−1]f1(6)
其中
v
1
′
v_1'
v1′和
v
2
′
v_2'
v2′分别是声呐和目标的径向速度。
如果声呐不动,则
Δ
f
≈
f
1
2
v
2
′
c
(7)
\Delta f \approx f_1 \frac{2v'_2}{c} \tag 7
Δf≈f1c2v2′(7)
模糊度函数
模糊度函数是由伍德华在研究雷达信号处理时引入的,其旨在刻画发射信号与回波信号之间的差异。通过模糊度函数来设计较优的发射波形。
若发射信号为
s
(
t
)
s(t)
s(t),则回波信号在经历时延、多普勒频移后变为
s
(
t
−
τ
)
e
−
j
2
π
f
t
s(t-\tau)e^{-j2\pi ft}
s(t−τ)e−j2πft。那么这两个信号的相关性便被称为模糊度函数
χ
(
τ
,
f
)
=
∫
−
∞
∞
s
(
t
)
s
(
t
−
τ
)
e
−
j
2
π
f
t
d
t
=
S
(
f
)
∗
[
S
(
f
)
e
−
j
2
π
f
τ
]
(8)
\chi(\tau, f) = \int_{-\infin}^{\infin}s(t)s(t-\tau)e^{-j2\pi ft}dt = S(f)*[S(f)e^{-j2\pi f\tau}] \tag 8
χ(τ,f)=∫−∞∞s(t)s(t−τ)e−j2πftdt=S(f)∗[S(f)e−j2πfτ](8)
模糊函数的特性有:
- 在 τ = 0 , f = 0 \tau = 0 ,f = 0 τ=0,f=0处取最大值
- ∣ χ ( τ , f ) ∣ 2 |\chi(\tau,f)|^2 ∣χ(τ,f)∣2在 τ − f \tau-f τ−f平面上的积分等于信号功率的平方。
参考文献
- 李启虎. 声呐信号处理引论[M]. 北京:科学出版社, 2012.