MLE和LMS估计的例题

本文通过一个实例探讨了在概率估计中,当一枚有偏硬币被投掷100次,仅出现1次正面的情况下,使用最大似然估计(MLE)和最小均方误差(LMS)来估计硬币正面向上的概率。通过比较两种方法的估计结果,阐述了它们在实际问题中的差异和适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

###下面通过一个example来讲讲通过MLE和通过LMS求解问题的过程。

例子:设一个有偏的硬币,抛了100次,出现1次人头,99次字。问用最大似然估计(MLE)和最小均方误差(LMS)估计出现人头的概率哪个大?
在这里插入图片描述

转自:https://zhuanlan.zhihu.com/p/32641187

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值