MLE估计和MAP估计 —— 基础解析与实例

0. 开头

最近在学习机器学习的过程中,了解到了三种参数估计方法,最大似然估计(Maximum Likelihood Estimation)、最大后验概率估计(Maximum A Posterior Estimation)和贝叶斯估计(Bayesian Estimation)。MLE估计较为基础,大多数本科阶段数理统计课程都会有所涉及,故一笔略过;本文重点介绍后两类参数估计方法,并逐一给出示例。

1. MLE估计

MLE估计的假设条件是随机变量独立同分布,因此若我们知道随机变量总体的分布(概率密度函数),其样本点的联合概率密度函数可写作:
f ( x 1 , x 2 , x 3 , . . . . . . , x n , Θ ) = f ( x 1 , Θ ) ∗ f ( x 2 , Θ ) ∗ f ( x 3 , Θ ) ∗ . . . . . . ∗ f ( x n , Θ ) f(x_1,x_2,x_3,......,x_n,\Theta) = f(x_1,\Theta)*f(x_2,\Theta)*f(x_3,\Theta)*......*f(x_n,\Theta) f(x1,x2,x3,......,xn,Θ)=f(x1,Θ)f(x2,Θ)f(x3,Θ)......f(xn,Θ)
其核心思想就是求解未知参数使得当前样本发生的概率最大,用数学表达式写出来就是(此处默认只有一个参数):
Θ ^ M L = a r g m a x f ( x 1 , x 2 , . . . , x n ∣ Θ ) \hat{\Theta}_{ML} = argmax f(x_1,x_2,...,x_n|\Theta) Θ^ML=argmaxf(x1,x2,...,xnΘ)

1.1 MLE估计实例

抛硬币十次,结果6正4反。假设如果正面朝上,随机变量X取1,反之取0,故我们得到一组样本
{1,1,1,1,1,1,0,0,0,0}。很明显X符合伯努利分布,其概率密度函数(pdf)为:
f x = Θ x ( 1 − Θ ) ( 1 − x ) f_x={\Theta}^x(1-{\Theta})^{(1-x)} fx=Θx(1Θ)(1x)
从常识来说,我们都知道投掷一枚正常的硬币,得到正面的概率为0.5,但是现在假设我们并不知道参数的总体分布,仅依据十个样本点推断概率的总体估计。因为X是独立同分布的,我们写出10次试验的联合概率密度函数:
f ( x 1 , x 2 , x 3 , . . . . . . , x 10 , Θ ) = Θ 6 ( 1 − Θ ) 4 f(x_1,x_2,x_3,......,x_{10},\Theta) =\Theta^{6}(1-\Theta)^{4} f(x1,x2,x3,......,x10,Θ)=Θ

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值