文章目录
高级数据分析与应用教程
在这一阶段,我们将深入探讨高级数据分析技术,包括动态可视化、时间序列分析、数据库处理以及大规模数据计算。通过掌握这些技能,您将能够在数据分析领域更上一层楼。
一、高级可视化工具
1.1 Plotly与Bokeh
1.1.1 Plotly
Plotly是一个开源的交互式可视化库,适合于创建动态和交互式图表。
安装Plotly
pip install plotly
示例案例:创建交互式散点图
import plotly.express as px
import pandas as pd
# 创建示例数据
df = pd.DataFrame({
"x": [1, 2, 3, 4, 5],
"y": [5, 4, 3, 2, 1],
"label": ["A", "B", "C", "D", "E"]
})
# 创建散点图
fig = px.scatter(df, x="x", y="y", text="label", title="交互式散点图")
fig.update_traces(textposition='top center')
fig.show()
1.1.2 Bokeh
Bokeh是另一个强大的交互式可视化库,尤其适合于处理大型数据集。
安装Bokeh
pip install bokeh
示例案例:使用Bokeh创建动态可视化
from bokeh.plotting import figure, show
from bokeh.io import output_notebook
from bokeh.models import ColumnDataSource
output_notebook()
# 创建数据源
source = ColumnDataSource(data=