Python高级数据分析与应用教程(第五阶段)

高级数据分析与应用教程

在这一阶段,我们将深入探讨高级数据分析技术,包括动态可视化、时间序列分析、数据库处理以及大规模数据计算。通过掌握这些技能,您将能够在数据分析领域更上一层楼。

一、高级可视化工具

1.1 Plotly与Bokeh

1.1.1 Plotly

Plotly是一个开源的交互式可视化库,适合于创建动态和交互式图表。

安装Plotly

pip install plotly

示例案例:创建交互式散点图

import plotly.express as px
import pandas as pd

# 创建示例数据
df = pd.DataFrame({
   
    "x": [1, 2, 3, 4, 5],
    "y": [5, 4, 3, 2, 1],
    "label": ["A", "B", "C", "D", "E"]
})

# 创建散点图
fig = px.scatter(df, x="x", y="y", text="label", title="交互式散点图")
fig.update_traces(textposition='top center')
fig.show()
1.1.2 Bokeh

Bokeh是另一个强大的交互式可视化库,尤其适合于处理大型数据集。

安装Bokeh

pip install bokeh

示例案例:使用Bokeh创建动态可视化

from bokeh.plotting import figure, show
from bokeh.io import output_notebook
from bokeh.models import ColumnDataSource

output_notebook()

# 创建数据源
source = ColumnDataSource(data=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值