python常用的算法

以下是常用的算法及其详细介绍,包括排序算法、查找算法、基础算法和图算法,同时我也会提到每种数据结构的特性、优缺点及使用场景,并给出示例。

一、排序算法

1. 冒泡排序(Bubble Sort)

冒泡排序是一种简单的排序算法。它通过重复遍历要排序的数列,比较每对相邻元素并交换它们的位置,使较大的元素逐渐“冒泡”到数列的末尾。

特性

  • 逐一比较相邻元素,并将较大的元素向后移动。
  • 最坏时间复杂度:O(n²)
  • 最佳时间复杂度:O(n)(当数组已经有序时)

优缺点

  • 优点:实现简单,适用于小规模数据。
  • 缺点:效率低下,特别是在大规模数据情况下。

示例

def bubble_sort(arr):  
    n = len(arr)  
    # 遍历所有数组元素  
    for i in range(n):  
        # 最后 i 个元素已经排好序  
        for j in range(0, n-i-1):  
            # 如果当前元素大于后续元素,交换它们  
            if arr[j] > arr[j+1]:  
                arr[j], arr[j+1] = arr[j+1], arr[j]  

# 示例  
arr = [64, 34, 25, 12, 22, 11, 90]  
bubble_sort(arr)  
print("排序后的数组:", arr)

2. 选择排序(Selection Sort)

特性

  • 每次选择最小元素,并将其放到已排序数组的末尾。
  • 最坏时间复杂度:O(n²)

优缺点

  • 优点:简单易懂,原地排序。
  • 缺点:同样,在大规模数据时效率低下。

示例

def selection_sort(arr):  
    n = len(arr)  
    for i in range(n):  
        # 假设当前 i 位置是最小值  
        min_idx = i  
        for j in range(i+1, n):  
            if arr[j] < arr[min_idx]:  
                min_idx = j  
        # 交换找到的最小值和当前 i 位置的值  
        arr[i], arr[min_idx] = arr[min_idx], arr[i]  

# 示例  
arr = [64, 25, 12, 22, 11]  
selection_sort(arr)  
print("排序后的数组:", arr)

3. 快速排序(Quick Sort)

特性

  • 选择一个"基准"元素,将数组分割为两个子数组,再递归对这两个子数组进行排序。
  • 最坏时间复杂度:O(n²)(当数组已经有序时)
  • 最好时间复杂度:O(n log n)

优缺点

  • 优点:在平均情况下非常高效,使用递归实现。
  • 缺点:不稳定排序,最坏情况下性能差。

示例

def quick_sort(arr):  
    if len(arr) <= 1:  
        return arr  
    pivot = arr[len(arr) // 2]  # 找到基准值  
    left = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值