以下是常用的算法及其详细介绍,包括排序算法、查找算法、基础算法和图算法,同时我也会提到每种数据结构的特性、优缺点及使用场景,并给出示例。
一、排序算法
1. 冒泡排序(Bubble Sort)
冒泡排序是一种简单的排序算法。它通过重复遍历要排序的数列,比较每对相邻元素并交换它们的位置,使较大的元素逐渐“冒泡”到数列的末尾。
特性:
- 逐一比较相邻元素,并将较大的元素向后移动。
- 最坏时间复杂度:O(n²)
- 最佳时间复杂度:O(n)(当数组已经有序时)
优缺点:
- 优点:实现简单,适用于小规模数据。
- 缺点:效率低下,特别是在大规模数据情况下。
示例:
def bubble_sort(arr):
n = len(arr)
# 遍历所有数组元素
for i in range(n):
# 最后 i 个元素已经排好序
for j in range(0, n-i-1):
# 如果当前元素大于后续元素,交换它们
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[j]
# 示例
arr = [64, 34, 25, 12, 22, 11, 90]
bubble_sort(arr)
print("排序后的数组:", arr)
2. 选择排序(Selection Sort)
特性:
- 每次选择最小元素,并将其放到已排序数组的末尾。
- 最坏时间复杂度:O(n²)
优缺点:
- 优点:简单易懂,原地排序。
- 缺点:同样,在大规模数据时效率低下。
示例:
def selection_sort(arr):
n = len(arr)
for i in range(n):
# 假设当前 i 位置是最小值
min_idx = i
for j in range(i+1, n):
if arr[j] < arr[min_idx]:
min_idx = j
# 交换找到的最小值和当前 i 位置的值
arr[i], arr[min_idx] = arr[min_idx], arr[i]
# 示例
arr = [64, 25, 12, 22, 11]
selection_sort(arr)
print("排序后的数组:", arr)
3. 快速排序(Quick Sort)
特性:
- 选择一个"基准"元素,将数组分割为两个子数组,再递归对这两个子数组进行排序。
- 最坏时间复杂度:O(n²)(当数组已经有序时)
- 最好时间复杂度:O(n log n)
优缺点:
- 优点:在平均情况下非常高效,使用递归实现。
- 缺点:不稳定排序,最坏情况下性能差。
示例:
def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[len(arr) // 2] # 找到基准值
left =