opencv入门笔记(二)

本博客参考书籍:《python opencv从入门到实践 》

图像运算

位运算

位与运算

cv2.bitwise_and(src1, src2[, dst[, mask]]) 
参数描述
src1待处理图像1
src2待处理图像2
dst经处理后的图像

位或运算

cv2.bitwise_or(src1, src2[, dst[, mask]])
参数描述
src1待处理图像1
src2待处理图像2
dst经处理后的图像

取反运算

cv2.bitwise_not(src[, dst[, mask]]) 
参数描述
src待处理图像
dst经处理后的图像

异或运算

cv2.bitwise_xor(src1, src2[, dst[, mask]]) 
参数描述
src1待处理图像1
src2待处理图像2
dst经处理后的图像

位运算特点

图像的像素值范围在(0-255)之间,经过标准化后范围会缩减到(0-1)之间,此时像素值为0说明该点为纯黑色,像素值为0说明该点为纯白色

与纯白色像素与纯黑色像素
原值纯黑
纯白原值
取反取反取反
异或取反原值

示例:位运算示例

import cv2
import numpy as np
import matplotlib.pyplot as plt
black_img=np.zeros((300,400,3),np.uint8)
# white_img=np.ones((300,400,3),np.uint8)
img=cv2.imread('../imgs/R-C_resize.jpg')

and_img=cv2.bitwise_and(img,black_img)
or_img=cv2.bitwise_or(img,black_img)
not_img=cv2.bitwise_not(img)
xor_img=cv2.bitwise_xor(img,black_img)

plt.subplots_adjust(hspace=0.5)
plt.subplot(221)
plt.title('and_img')
plt.imshow(img)

plt.subplot(222)
plt.title('or_img')
plt.imshow(or_img)

plt.subplot(223)
plt.title('not_img')
plt.imshow(not_img)

plt.subplot(224)
plt.title('xor_img')
plt.imshow(xor_img)

plt.show()

运行结果
在这里插入图片描述

加法运算

两个图像的每个像素值相加会得到新的图像

  • 简单的"+"运算,当两像素相加和超过255时,新像素值会取两者的和对255取模运算的结果
  • add()方法,当两像素相加和超过255时,新像素值取255
  • addWeighted()方法,对两个图像的像素值进行加权求和

示例:查看三种加法运算的区别

我们先来看一下原始图像
在这里插入图片描述

import cv2
import matplotlib.pyplot as plt

img1=cv2.imread('../imgs/mountain3.jpg')
img2=cv2.imread('../imgs/mountain8.jpg')
img1=cv2.resize(img1,(600,400))
img2=cv2.resize(img2,(600,400))
row,column,channel=img1.shape

_img=img1+img2
add_img=cv2.add(img1,img2)
addweight_img=cv2.addWeighted(img1,0.8,img2,0.5,0)

plt.subplots_adjust(hspace=0.5)
plt.subplot(221)
plt.title('_img')
plt.imshow(_img)

plt.subplot(222)
plt.title('add_img')
plt.imshow(add_img)

plt.subplot(223)
plt.title('addweight_img')
plt.imshow(addweight_img)

plt.show()

运行结果

在这里插入图片描述

滤波器

均值滤波

cv2.blur(src, ksize[, dst[, anchor[, borderType]]])
参数描述
src待处理图像
dst经处理后的图像
ksize滤波核大小

中值滤波

cv2.medianBlur(src, ksize[, dst])
参数描述
src待处理图像
dst经处理后的图像
ksize滤波核大小(需是奇数且大于1)

高斯滤波

cv2.GaussianBlur(src, ksize, sigma1[, dst[, sigma2[, borderType]]])
参数描述
src待处理图像
dst经处理后的图像
ksize滤波核大小(滤波核长宽可以不同、但是必须是正奇数)
sigma1卷积核水平方向的标准差
sigma2卷积核竖直方向的标准差

双边滤波

cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]])
参数描述
src待处理图像
d以当前像素为中心的整个滤波范围直径
sigmaColor参与计算的颜色范围
sigmaSpace参与计算的像素数量
dst经过处理后的图像

示例:查看多种滤波器的处理效果

import cv2
import matplotlib.pyplot as plt
import matplotlib

plt.subplots_adjust(hspace=0.5)
matplotlib.rcParams['font.family']='SimHei'

img=cv2.imread('../imgs/R-C_resize.jpg')

blur_img=cv2.blur(img,(9,9))
median_img=cv2.medianBlur(img,9)
gaussian_img=cv2.GaussianBlur(img,(13,13),0,0)
bilateral_img=cv2.bilateralFilter(img,15,120,100)

plt.subplot(321)
plt.title('原始图像')
plt.imshow(img)

plt.subplot(322)
plt.title('均值滤波(9x9)')
plt.imshow(blur_img)
#
#
plt.subplot(323)
plt.title('中值滤波(9x9)')
plt.imshow(median_img)

plt.subplot(324)
plt.title('高斯滤波(13x13)')
plt.imshow(gaussian_img)

plt.subplot(325)
plt.title(r'双边滤波(d=15)')
plt.imshow(bilateral_img)

plt.show()

运行结果
在这里插入图片描述

视频处理

cv2.VideoCapture(device) 

参数device:打开的视频捕获设备的Id(即摄像机索引)。如果只连接了一个摄像头,只需传递0即可

示例:打开笔记本电脑内置摄像头

import cv2

camera=cv2.VideoCapture(0)
while camera.isOpened():
	_,img=camera.read()
	cv2.imshow('video',img)
	key=cv2.waitKey(1)
	if key==32:break
camera.release()
cv2.destroyAllWindows()

人脸识别

级联分类器

在目录'..\Lib\site-packages\cv2\data'下存在着opencv官方已经训练好的一些级联分类器,
在这里插入图片描述这些XML文件有着不同的功能
在这里插入图片描述

人脸跟踪

加载级联分类器

cv2.CascadeClassifier(filename)

使用分类器识别图像

cv2.CascadeClassifier.detectMultiScale(image[, scaleFactor[, minNeighbors[, flags[, minSize[, maxSize]]]]])

返回值类型:objects
捕捉到的目标区域数组。每个元素都是一个矩形区域,包含该矩形的左上顶点横纵坐标和长宽,我们可以使用rectangle()函数将该矩形区域绘制在原图像中并返回

参数描述
image待识别的图像
scaleFactor图像缩放比例

示例:检测照片中的人脸位置

我们先准备一张照片
在这里插入图片描述

import cv2

path=r'D:\Myanaconda\envs\SmooFaceEngine-master\Lib\site-packages\cv2\data\haarcascade_frontalface_default.xml'
img=cv2.imread('../images/555.png')
# 加载级联分类器
face_recognizor=cv2.CascadeClassifier(path)
# 使用分类器识别图像
faces=face_recognizor.detectMultiScale(img)
for (x,y,w,h) in faces:
    cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),5)
cv2.imshow('faces',img)
cv2.waitKey()

cv2.destroyAllWindows()

运行结果
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夺笋123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值