不同路径
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7
输出:28
示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
- 向右 -> 向下 -> 向下
- 向下 -> 向下 -> 向右
- 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3
输出:28
示例 4:
输入:m = 3, n = 3
输出:6
提示:
1 <= m, n <= 100
题目数据保证答案小于等于 2 * 109
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
```cpp
class Solution {
public:
int uniquePaths(int m, int n) {
int dp[101][101];
int i,j;//i表示行,j表示列
for(i=0;i<m;i++)dp[i][0]=1;
for(j=0;j<n;j++)dp[0][j]=1;
for(i=1;i<m;i++)
{
for(j=1;j<n;j++)
{
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
};
分析:
- 确定dp数组的含义,dp[i][j]表示走到坐标(i,j)的方法数
- 确定递推公式,dp[i][j]=dp[i-1][j]+dp[i][j-1],只能从上面和下面走过来
- 初始化dp数组,着种数组初始化一般得看递推公式和填写表格的顺序来初始化,显然初始化二维表格的第一行和第一列最好
- 确定遍历顺序,先遍历行再遍历列或者先遍历列再遍历行都行
- 打印出dp数组调试调试就行了
- 这题虽然是一道小题,但是却体现了重要的思想和方法,dp数组的五个步走一定要记住!