二叉树的基本操作

const int maxn = (int)1e3 + 5;
template<class T>
class Myque
{
private:
	T data[maxn];
	int f, r;
public:
	Myque() :f(0), r(0){}
	bool empty(){ return f == r; }
	T front(){ return data[f]; }
	void pop(){ f = (f + 1) % maxn; }
	void push(T t){ data[r] = t; r = (r + 1) % maxn; }
};
// 二叉树BinTree 
typedef char Elemtype;
typedef struct BTNode
{
	Elemtype data;
	BTNode *left, *right;
}BTNode, *BinTree;

遍历操作 


void visit(BinTree T)	//具体自己实现
{
	cout << T->data << " " ;
}
void InorderTraversal(BinTree BT)		//中根遍历
{
	if (!BT)return;
	InorderTraversal(BT->left);
	visit(BT);
	InorderTraversal(BT->right);
}
void PreorderTraversal(BinTree BT)		//先根遍历
{
	if (!BT)return;
	visit(BT);
	PreorderTraversal(BT->left);
	PreorderTraversal(BT->right);
}
void PostorderTraversal(BinTree BT)		//后根遍历
{
	if (!BT)return;
	PostorderTraversal(BT->left);
	PostorderTraversal(BT->right);
	visit(BT);
}
void LevelorderTraversal(BinTree BT)	//层序遍历
{
	if (!BT)return;
	Myque<BinTree> que;	//需要辅助队列来实现
	BinTree p;
	que.push(BT);
	while (!que.empty())
	{
		p = que.front(); que.pop();
		visit(p);
		if (p->left)que.push(p->left);
		if (p->right)que.push(p->right);
	}
}

创建操作

char ch;    //先根
void CreateBinTree(BinTree &T)	//  ABC##DE#G##F###
{
	cin >> ch;
	if (ch == '#')T = NULL;
	else
	{
		T = (BinTree)malloc(sizeof(BTNode));
		T->data = ch;
		CreateBinTree(T->left);
		CreateBinTree(T->right);
	}

}

复制操作

void BinTreeCopy(BinTree &New,BinTree T)
{
	if (T == NULL)New = NULL;
	else
	{
		New = (BinTree)malloc(sizeof(BTNode));
		New->data = T->data;
		BinTreeCopy(New->left, T->left);
		BinTreeCopy(New->right, T->right);
	}
}

深度

int BinTreeHeight(BinTree BT)
{
	if (BT == NULL)return 0;
	int l = BinTreeHeight(BT->left)+1;
	int r = BinTreeHeight(BT->right)+1;
	return l > r ? l : r;
}

结点个数

int BinTreeNode(BinTree BT)
{
	if (BT == NULL)return 0;
	return 1 + BinTreeNode(BT->left) + BinTreeNode(BT->right);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值