ACWING 之Dijkstra算法

本文介绍了Dijkstra算法在稠密图和稀疏图中的两种实现方式。第一种是朴素的Dijkstra算法,适用于稠密图,使用邻接矩阵,通过不断更新最短路径来找到源点到所有节点的最短距离。第二种是堆优化的Dijkstra算法,利用优先队列(最小堆)提高效率,适用于稀疏图。这两种实现均能找出图中从源点到目标点的最短路径。
摘要由CSDN通过智能技术生成

1)朴素Dijkstra算法

        适用稠密图(m~n^2), 用邻接矩阵实现;

 


#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
const int N = 1000;
int g[N][N];
int dis[N];
bool st[N];

int Dijkstra(int n )
{
    memset(dis, inf, sizeof(dis));
    dis[1] = 0 ;
    for(int i =1; i<=n; i++)
    {
        int t = - 1;
        for(int j = 1; j<= n; j++)
            if(!st[j] && (t==-1 || dis[j] < dis[t]))
                t = j;
                
        st[t] = true;
        
        for(int j = 1; j<= n; j++)
            dis[j] = min(dis[j], dis[t] + g[t][j]);
    }
    if(dis[n] == inf) return -1;
    return dis[n];
}
int main()
{
    memset(g, inf, sizeof(g));
    i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值