神经网络简介ppt英文,人工神经网络简介

神经网络是什么

神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。

人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。

作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。

人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。

因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。扩展资料:神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。

主要的研究工作集中在以下几个方面:1、生物原型从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

2、建立模型根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

3、算法在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。

参考资料:百度百科-神经网络(通信定义)

神经网络具体是什么?

神经网络由大量的神经元相互连接而成AI爱发猫。每个神经元接受线性组合的输入后,最开始只是简单的线性加权,后来给每个神经元加上了非线性的激活函数,从而进行非线性变换后输出。

每两个神经元之间的连接代表加权值,称之为权重(weight)。不同的权重和激活函数,则会导致神经网络不同的输出。举个手写识别的例子,给定一个未知数字,让神经网络识别是什么数字。

此时的神经网络的输入由一组被输入图像的像素所激活的输入神经元所定义。在通过非线性激活函数进行非线性变换后,神经元被激活然后被传递到其他神经元。重复这一过程,直到最后一个输出神经元被激活。

从而识别当前数字是什么字。

神经网络的每个神经元如下基本wx+b的形式,其中x1、x2表示输入向量w1、w2为权重,几个输入则意味着有几个权重,即每个输入都被赋予一个权重b为偏置biasg(z)为激活函数a为输出如果只是上面这样一说,估计以前没接触过的十有八九又必定迷糊了。

事实上,上述简单模型可以追溯到20世纪50/60年代的感知器,可以把感知器理解为一个根据不同因素、以及各个因素的重要性程度而做决策的模型。举个例子,这周末北京有一草莓音乐节,那去不去呢?

决定你是否去有二个因素,这二个因素可以对应二个输入,分别用x1、x2表示。此外,这二个因素对做决策的影响程度不一样,各自的影响程度用权重w1、w2表示。

一般来说,音乐节的演唱嘉宾会非常影响你去不去,唱得好的前提下即便没人陪同都可忍受,但如果唱得不好还不如你上台唱呢。所以,我们可以如下表示:x1:是否有喜欢的演唱嘉宾。

x1=1你喜欢这些嘉宾,x1=0你不喜欢这些嘉宾。嘉宾因素的权重w1=7x2:是否有人陪你同去。x2=1有人陪你同去,x2=0没人陪你同去。

是否有人陪同的权重w2=3。这样,咱们的决策模型便建立起来了:g(z)=g(w1x1+w2x2+b),g表示激活函数,这里的b可以理解成为更好达到目标而做调整的偏置项。

一开始为了简单,人们把激活函数定义成一个线性函数,即对于结果做一个线性变化,比如一个简单的线性激活函数是g(z)=z,输出都是输入的线性变换。

后来实际应用中发现,线性激活函数太过局限,于是引入了非线性激活函数。

神经网络的历史是什么?

沃伦·麦卡洛克和沃尔特·皮茨(1943)基于数学和一种称为阈值逻辑的算法创造了一种神经网络的计算模型。这种模型使得神经网络的研究分裂为两种不同研究思路。

一种主要关注大脑中的生物学过程,另一种主要关注神经网络在人工智能里的应用。一、赫布型学习二十世纪40年代后期,心理学家唐纳德·赫布根据神经可塑性的机制创造了一种对学习的假说,现在称作赫布型学习。

赫布型学习被认为是一种典型的非监督式学习规则,它后来的变种是长期增强作用的早期模型。从1948年开始,研究人员将这种计算模型的思想应用到B型图灵机上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值