作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
朋友们如果有需要全套《AGI大模型学习资源包》,可以扫描下方二维码免费领取
需要的朋友 点击下方👇👇👇【微信名片】,100%免费领取
-
一、GPT 大模型训练架构 - Transformer 架构
- 1、Transformer 架构
- 2、Transformer 架构的编码器和解码器
- 3、输入序列的位置编码
- 4、自注意力机制编码流程
- 5、OpenAI 开源的训练 GPT 大模型的 Transformer 代码
- 6、Transformer 代码示例
一、GPT 大模型训练架构 - Transformer 架构
1、Transformer 架构
Transformer 架构 是 Google 设计的 , 当前最流行的 GPT 大模型 都使用的该架构 , 最著名的就是 OpenAI 的 ChatGPT 大模型 ;
Transformer 架构 是一种用于 处理序列数据 的深度学习模型架构 , 主要用于解决 自然语言处理 NLP 领域中的序列建模任务 ;
2、Transformer 架构的编码器和解码器
Transformer 架构 由 编码器 和 解码器 两部分组成 , 每个部分都包含 多层堆叠的 自注意力机制 和 前馈神经网络 ;
-
编码器 : 负责 将 输入序列 转换为一系列 向量表示 ;
- 自注意力机制 : 计算输入序列中每个位置与其他所有位置的相关性 , 来捕捉序列中的依赖关系 ;
- 前馈神经网络 : 每层包含一个前馈神经网络 , 组成了两层全连接网络 , 用于进一步转换自注意力机制的输出 ;
-
解码器 : 根据 向量表示 生成 输出序列 ;
- 掩码自注意力机制 : 在计算 注意力权重 时添加一个掩码 , 使得当前位置只能关注到它之前的输入 , 确保当前位置的输出只依赖于之前的输入 ;
3、输入序列的位置编码
自注意力机制 允许 训练的大模型 在一个 输入序列 中的 各个位置 之间 建立 全局依赖关系 ;
使用 位置编码 来为 输入序列 中的 每个位置 标记 位置信息 , 位置编码 将 位置信息 编码成一个 固定维度 的向量 , 这样 训练的模型 可以区分不同位置的 词语 ;
在计算每个位置的表示时 , 同时 考虑到 序列中所有其他位置的信息 , 这对于捕捉 长距离依赖 特别有效 ;
4、自注意力机制编码流程
自注意力机制 训练 / 编码 流程 :
- 首先 , 计算 输入序列 中 每个位置的 查询 Query 、 键 Key 、 值 Value 的 向量 ;
- 然后 , 计算 查询向量 与所有 键向量 的点积 , 同时应用 softmax 函数 得到每个位置的 注意力 权重 ;
- 最后 , 根据这些 注意力权重 对 值向量 进行 加权求和 , 得到 每个位置 的 输出向量 ;
5、OpenAI 开源的训练 GPT 大模型的 Transformer 代码
下面是 OpenAI 开源的训练 GPT 大模型的 Transformer 代码 :
- finetune-transformer-lm 项目 : https://github.com/openai/finetune-transformer-lm/tree/master
- 核心 main 函数入口代码 : https://github.com/openai/finetune-transformer-lm/blob/master/train.py
在 GPT 领域 , 代码并不是难点 , 难点是 数据的处理 和 算力 , 训练 GPT 大模型的代码量很少 ;
6、Transformer 代码示例
GPT 大模型训练 的 Transformer 代码 : 具体的 GPT 大模型训练流程 , 可参考代码中的注释 ;
代码语言:javascript
# 导入需要的库
import os
import time
import math
import json
import joblib
import random
import argparse
import numpy as np
import tensorflow as tf
# 导入一些工具函数和模块
from tqdm import tqdm # 进度条
from functools import partial # 高阶函数工具
from sklearn.utils import shuffle # 打乱数据
from sklearn.metrics import accuracy_score # 计算准确率
# 从自定义模块中导入函数和类
from opt import adam, warmup_cosine, warmup_linear, warmup_constant # 优化器和学习率调度器
from datasets import rocstories # 数据集加载函数
from analysis import rocstories as rocstories_analysis # 数据分析函数
from text_utils import TextEncoder # 文本编码工具
from utils import encode_dataset, flatten, iter_data, find_trainable_variables, convert_gradient_to_tensor, shape_list, ResultLogger, assign_to_gpu, average_grads, make_path # 一些实用函数
# 定义激活函数
def gelu(x):
# GELU激活函数
return 0.5*x*(1+tf.tanh(math.sqrt(2/math.pi)*(x+0.044715*tf.pow(x, 3))))
def swish(x):
# Swish激活函数
return x*tf.nn.sigmoid(x)
# 定义优化器、激活函数和学习率调度器的字典
opt_fns = {'adam':adam}
act_fns = {'relu':tf.nn.relu, 'swish':swish, 'gelu':gelu}
lr_schedules = {'warmup_cosine':warmup_cosine, 'warmup_linear':warmup_linear, 'warmup_constant':warmup_constant}
# 标准化函数
def _norm(x, g=None, b=None, e=1e-5, axis=[1]):
# ...(函数内部实现省略)
def norm(x, scope, axis=[-1]):
# ...(函数内部实现省略)
# Dropout函数
def dropout(x, pdrop, train):
# ...(函数内部实现省略)
# 注意力权重掩码函数
def mask_attn_weights(w):
# ...(函数内部实现省略)
# 注意力机制函数
def _attn(q, k, v, train=False, scale=False):
# ...(函数内部实现省略)
# 分割和合并状态函数
def split_states(x, n):
# ...(函数内部实现省略)
def merge_states(x):
# ...(函数内部实现省略)
# 分割和合并头函数
def split_heads(x, n, k=False):
# ...(函数内部实现省略)
def merge_heads(x):
# ...(函数内部实现省略)
# 一维卷积函数
def conv1d(x, scope, nf, rf, w_init=tf.random_normal_initializer(stddev=0.02), b_init=tf.constant_initializer(0), pad='VALID', train=False):
# ...(函数内部实现省略)
# 注意力块函数
def attn(x, scope, n_state, n_head, train=False, scale=False):
# ...(函数内部实现省略)
# 多层感知机函数
def mlp(x, scope, n_state, train=False):
# ...(函数内部实现省略)
# Transformer块函数
def block(x, scope, train=False, scale=False):
# ...(函数内部实现省略)
# 嵌入函数
def embed(X, we):
# ...(函数内部实现省略)
# 分类函数
def clf(x, ny, w_init=tf.random_normal_initializer(stddev=0.02), b_init=tf.constant_initializer(0), train=False):
# ...(函数内部实现省略)
# 主模型函数
def model(X, M, Y, train=False, reuse=False):
# ...(函数内部实现省略)
# 多GPU训练函数
def mgpu_train(*xs):
# ...(函数内部实现省略)
# 多GPU预测函数
def mgpu_predict(*xs):
# ...(函数内部实现省略)
# 数据转换函数
def transform_roc(X1, X2, X3):
# ...(函数内部实现省略)
# 迭代应用函数(用于训练和验证)
def iter_apply(Xs, Ms, Ys):
# ...(函数内部实现省略)
# 迭代预测函数
def iter_predict(Xs, Ms):
# ...(函数内部实现省略)
# 保存模型参数函数
def save(path):
# ...(函数内部实现省略)
# 记录日志函数
def log():
# ...(函数内部实现省略)
# 主函数(命令行参数解析和模型训练/预测)
if __name__ == '__main__':
# ...(参数解析和模型初始化省略)
# 训练循环
for i in range(n_iter):
# ...(训练迭代和日志记录省略)
# 提交预测
if submit:
# ...(加载最佳参数,进行预测和分析省略)
# 一些辅助函数和变量定义(如argmax,pred_fns,filenames等)
# ...(省略)
如何系统的去学习AI大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
??有需要的小伙伴,可以V扫描下方二维码免费领取??
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
需要的朋友 点击下方👇👇👇【微信名片】,100%免费领取