超效率SE-DEA模型及Matlab应用

本文详细介绍了超效率SE-DEA模型,它是数据包络分析(DEA)的一种扩展,考虑了环境影响和不确定性因素。文章通过Matlab实现了一个评估不同学校教育效率的案例,解释了如何计算超效率分数和权重系数,为读者提供了一个理解和应用SE-DEA模型的实际示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

超效率SE-DEA模型及Matlab应用

导言

数据包络分析(Data Envelopment Analysis,DEA)是一种用于评估相对效率的方法,特别适用于多输入多输出的生产过程。在前一篇博客中,我们介绍了基本的DEA模型及其在Matlab中的应用。今天,我们将深入探讨DEA的一个变体——超效率SE-DEA模型,以及如何使用Matlab来实现和应用这个模型。

超效率SE-DEA模型简介

超效率SE-DEA模型是DEA模型的一个扩展,它允许在评估相对效率时考虑到一些额外的因素,如环境影响、不确定性等。这个模型的核心思想是:在评估相对效率时,考虑到最优实际生产前沿和实际观察到的生产前沿之间的距离,这个距离反映了生产过程中的资源浪费或不完美。

超效率DEA模型的数学表达如下:

Maximize θ
Subject to:

1. Σ λ_i * x_i ≤ θ * x_0   (i = 1, 2, ..., n)
2. Σ λ_i * y_i ≥ y_0   (i = 1, 2, ..., n)
3. Σ λ_i = 1
4. λ_i ≥ 0   (i = 1, 2, ..., n)
5. θ ≥ 0

其中,x_i 和 y_i 分别表示第 i 个决策单元(生产单位)的输入和输出向量,λ_i 是权重系数,θ 是超效率分数,x_0 和 y_0 分别表示最优实际生产前沿的输入和输出向量。

SE-DEA模型的Matlab实现

现在让我们来看看如何使用Matlab来实现和应用SE-DEA模型。我们将以一个简单的案例为例进行说明。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值