算法练习Day30 (Leetcode/Python-动态规划)

62. Unique Paths

There is a robot on an m x n grid. The robot is initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.

Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the bottom-right corner.

思路:以下分析摘自https://programmercarl.com/0062.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE%84.html#%E6%80%9D%E8%B7%AF

树的深度是m+n+1,二叉树的节点个数是2^(m+n+1),DFS需要遍历整个二叉树,算法复杂度就是O(2^(m + n - 1) - 1),这是指数级别的复杂度。

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

2. 确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

3. dp数组的初始化

如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

4. 确定遍历顺序

这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

5. 举例推导dp数组

数论方法:

可以看出一共m,n的话,无论怎么走,走到终点都需要 m + n - 2 步。

在这m + n - 2 步中,一定有 m - 1 步是要向下走的,不用管什么时候向下走。

那么有几种走法呢? 可以转化为,给你m + n - 2个不同的数,随便取m - 1个数,有几种取法。

那么这就是一个组合问题了。

所以以下就是可走的path的个数:

递归法:

def Solution():
    def uniquePaths(self, m, n):
        if m == 1 or n == 1:
            return 1
        return self.uniquePaths(m - 1, n) + self.uniquePaths(m, n-1)

动态规划法:

class Solution(object):
    def uniquePaths(self, m, n):
        dp = [[0] * n] * m
        for i in range(m):
            dp[i][0] = 1
        for j in range(n):
            dp[0][j] = 1
        for i in range(1,m):
            for j in range(1,n):
                dp[i][j] = dp[i-1][j] + dp[i][j-1]
        return dp[m-1][n-1]

注意!之前习惯了numpy,总是直接dp[:,0] = 1,这样在list里是不对的。

63. Unique Paths II

如果有障碍物的话,之后的路就不通了,在设置初始状态和更新状态的时候都要对应改动。

具体分析见此链接代码随想录

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        if (obstacleGrid[0][0] == 1)
            return 0;
        vector<int> dp(obstacleGrid[0].size());
        for (int j = 0; j < dp.size(); ++j)
            if (obstacleGrid[0][j] == 1)
                dp[j] = 0;
            else if (j == 0)
                dp[j] = 1;
            else
                dp[j] = dp[j-1];

        for (int i = 1; i < obstacleGrid.size(); ++i)
            for (int j = 0; j < dp.size(); ++j){
                if (obstacleGrid[i][j] == 1)
                    dp[j] = 0;
                else if (j != 0)
                    dp[j] = dp[j] + dp[j-1];
            }
        return dp.back();
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值