mysql集成Qwen大模型MCP计算【附实战代码】

题目分析

现有一放射性样品含有5mg 210 P b ^{210}Pb 210Pb ,请计算10年后该样品的放射性活度。

  • 已知:
    • 核素: 210 P b ^{210}Pb 210Pb (铅-210)。
    • 初始质量:5 mg。
    • 时间:10年。
  • 目标:计算10年后放射性活度(单位:Bq,贝克勒尔)。
  • 公式:
    • 放射性活度: A = A 0 ⋅ ( 1 2 ) t T 1 / 2 A = A_0 \cdot \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}} A=A0(21)T1/2t
      • A 0 A_0 A0:初始活度(Bq)。
      • A A A:时间 t t t 后的活度(Bq)。
      • T 1 / 2 T_{1/2} T1/2:半衰期(年)。
      • t t t:时间(年)。
    • 初始活度 A 0 A_0 A0
      • 摩尔数: n = m M n = \frac{m}{M} n=Mm m m m 为质量(g), M M M 为摩尔质量(g/mol)。
      • 原子数: N = n ⋅ N A N = n \cdot N_A N=nNA N A = 6.022 × 1 0 23   mol − 1 N_A = 6.022 \times 10^{23} \, \text{mol}^{-1} NA=6.022×1023mol1(阿伏伽德罗常数)。
      • 衰变常数: λ = ln ⁡ ( 2 ) T 1 / 2 \lambda = \frac{\ln(2)}{T_{1/2}} λ=T1/2ln(2)(s⁻¹,用于 Bq)。
      • 初始活度: A 0 = λ ⋅ N A_0 = \lambda \cdot N A0=λN(Bq)。
  • 通用性:数据库和函数需支持任意核素,通过添加数据库记录实现。
  • 单位:
    • 质量:mg(转换为 g)。
    • 时间和半衰期:年。
    • 活度:Bq(1 Bq = 1次衰变/秒)。

步骤 1:在 MySQL 中构建核素半衰期数据库

我们将创建一个 MySQL 数据库,存储核素参数,确保数据质量(IAEA 文档第4.4节)并便于与 Python 集成。

1.1 数据库设计

  • 数据库:nuclear_decay
  • 表:Nuclide
    • 字段:
      • NuclideID:主键,自增整数。
      • Name:核素名称(如 “Pb-210”)。
      • HalfLife:半衰期(年)。
      • MolarMass:摩尔质量(g/mol)。
      • DecayConstant:衰变常数(年⁻¹,预计算为 λ = ln ⁡ ( 2 ) T 1 / 2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值