面试题:从杨氏矩阵查找数字,要求:时间复杂度小于O(N);

文章介绍了如何利用杨氏矩阵的递增特性编写程序,以O(1)时间复杂度在给定矩阵中查找特定数字,通过逐行或逐列排除的方式提高查找效率。
摘要由CSDN通过智能技术生成

杨氏矩阵
有一个数字矩阵,矩阵的每行从左到右是递增的,矩阵从上到下是递增的

杨氏矩阵只要求递增,不要求是等比或等差。
请编写程序在这样的矩阵中查找某个数字是否存在
要求:时间复杂度小于O(N);

#include <stdio.h>
find_num(int arr[3][3], int* px, int* py, int n)
{
	int x = 0;
	int y = *py - 1;
	while (x < *px && y >= 0)
	{
		if (arr[x][y] < n)
		{
			x++;
		}
		else if(arr[x][y] > n)
		{
			y--;
		}
		else
		{
			*px = x;
			*py = y;
			return 1;
		}
	}
	return 0;
}

int main()
{
	int arr[3][3] = { 1,2,3,4,5,6,7,8,9 };
	int n = 0;
	int x = 3;
	int y = 3;
	scanf("%d", &n);
	int r = find_num(arr, &x, &y, n);
	if (r == 1)
	{
		printf("找到了\n");
		printf("下标是 :%d %d\n", x, y);
	}
	else
	{
		printf("没找到\n");
	}
	return 0;
}

         最简单的方法是遍历矩阵,但此时时间复杂度为O(N),不符合题目要求。

        那么就要用到杨氏矩阵的特性来写代码,矩阵的每行从左到右是递增的,矩阵从上到下是递增的,

        如果与每一行最大数比较,n>3说明这一行没有要找的数,所以这一行可以排除,行加一x++,循环直到最后一行,如果n大于最后一行最大数,说明找不到,跳出循环。

        如图,当与第三行最大值9相比,n<9,此时9是这一列最小值,(上方行已经排除,与下方相比为最小值),列向左移动y--,如果n小于最后一行最小值,说明找不到,跳出循环。

        当找到n时,跳出循环;

一次排除一行或一列,这样代码的时间复杂度小于O(N).

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值