OpenMMlab AI实战营第二期-day2

 人体姿态估计与MMPose

 

什么是人体姿态估计?

输入:图像I

输出:所有关键点的像素坐标(x_{1},y_{1}),...,(x_{J},y_{J}),其中J为关键点的总数。

下游任务:行为识别;CG动画;人机交互;动物行为分析;

2D姿态估计

目标:在图像上定位人体关键点的坐标

相关技术总结:

 1.基于回归

关键点检测问题可建模为一个回归问题:(x_{1},y_{1},...,x_{J},y_{J})=f_{\theta }(I),可以用深度学习进行回归。

相关方法:

DeepPose(2014)

 Residual Log-likelihood Estimation(RLE)(2021)

2.基于热力图

 

不直接回归关键点的坐标,而是预测关键点位于每个位置的概率,即H_{1...J}=f_{\theta }(I),H称为热力图。

热力图可以基于原始关键点坐标生成,作为训练网络的监督信息。

网络预测的热力图可以通过求极大值等方法得到关键点的坐标。

相关方法

Hourglass(2016)

 

多人姿态估计

1.自顶向下的方法

2.自底向上的方法

3.单阶段方法(SPM(2019))

4.基于Transformer的方法(PRTR( 2021)、TokenPose( 2021))

3D姿态估计

预测人体关键点在三维空间中的坐标,在三维空间还原人体的姿态。

方法:Coarse-to-Fine Volumetric Prediction(2017)、Simple Baseline 3D(2017)

评估指标

PCP、PDJ、PCK、OKS based mAP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值