关于数据结构树结果的总结

树的基本概念:

树是一种非线性的数据结构,它是由nn>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

树结果的主要特点:

在最顶端的结点,称为根结点,根节点没有前驱结点,也是所有结点的祖先;

除根节点外,其余结点被分成X(X>0)个互不相交的集合T1T2……Tm,其中每一个集合Ti(1<= i<= X)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继结点;

需要注意的是:

1、所有的子树之间不能有交集;

如图所示:

 

2、除了根结点外,其他所有结点都是有且只有一个父结点;

3、一颗N个结点的树由N-1条边组成;

一些相关的基本概念:

节点的度:一个节点含有的子树的总个数称为该节点的度;

叶子节点或终端节点:度为0的节点称为叶子节点,也可以称为终端节点;

非终端节点或分支节点:除了根节点,其他所有度不为0的节点;

双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的双亲节点或者父节点; 

孩子节点或子节点:一个节点含有的子树的根节点称为该节点的孩子节点或者子节点;

兄弟节点:具有相同父节点的节点互称为兄弟节点;

树的度:一棵树中,最大的节点的度称为树的度;

节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

树的高度或者深度:从根节点开始为第一层,一次往下,一直到最底层,有多少层,则树的深度就是多少;

节点的祖先:从根到该节点所经分支上的所有节点;

子孙:以某节点为根的子树中任一节点都称为该节点的子孙。

1、

二叉树的概念:

度为2的树一棵二叉树是结点的一个有限集合,该集合:为空

或者由一个根节点加上两棵别称为左子树和右子树的二叉树组成;

满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。

完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

二叉树的几条性质:

性质1:在一颗二叉树中,如果叶子结点的个数为n0,度为2的结点个数为n2,则有n0=n2+1;

性质2:二叉树的第i层上最多有2^(i-1) 个结点(i>=1);

性质3:在一颗深度为k的二叉树中,最多有2^k - 1个结点;

性质4:具有n个结点的完全二叉树的深度为k= log2(N+1);

性质5:对一颗具有n个结点的完全二叉树从1开始按层序编号,则对于编号为i(1<=i<=n)的结点,则有以下:

1. i>0i位置节点的双亲序号:(i-1)/2i=0i为根节点编号,无双亲节点

2. 2i+1<n,左孩子序号:2i+12i+1>=n否则无左孩子

3. 2i+2<n,右孩子序号:2i+22i+2>=n否则无右孩子

例题:

1、

 

2、

 

3、

 

 

4、

 

 

编程题:

1、已知(L,N),(G,K),(G,L),(G,M),(B,E),(B,F),(D,G),(D,H),(D,I),(D,J),(A,B),(A,C),(A,D)是表示一棵树中具有父子关系的边

(1)请画出树形表示图;

(2)树的根节点   A   

(3)列出树的叶子点  N、K、M、E、F、H、C、I、J                      

(4)树的高度  5      

(5)节点D的度数 4   

(6)节点L的层数    4    

(7)节点G的兄弟  H、I、J             ,祖先  A            ,子孙  K,L,M,N            

2、连起来的整颗树:

2、 编程实现:以孩子兄弟链表作存储结构,创建一棵树。并输出其先根遍历序列。

完整代码:

#include<iostream>
using namespace std;
typedef char ElemType;
#define MaxSize 15
typedef struct CSNode
{
    ElemType data;
    struct CSNode* firstchild, * nextsibling;
}CSNode, * CSTree;
typedef struct
{
    CSNode* data[MaxSize]; //存放栈中的数据元素
    int top; //存放栈顶指针
}SqStack; //顺序栈类型

void InitStack(SqStack*& s) //初始化栈
{
    s = (SqStack*)malloc(sizeof(SqStack)); //分配一个顺序栈空间,首地址存放在s中
    if (s == NULL) printf("内存分配不成功!\n");
    s->top = -1; //栈顶指针置为-1
}

bool EmptyStack(SqStack* s) //判断栈是否为空
{
    return s->top == -1;
}

bool Push(SqStack*& st, CSNode*b) //进栈
{
    if (st->top == MaxSize - 1) return false; //栈满的情况,即栈上溢出
    st->data[++st->top] = b; //栈顶指针先增1,再将元素放在栈顶指针处
    return true;
}

bool Pop(SqStack*& st, CSNode*&b) //出栈
{
    if (st->top == -1) return false; //栈空的情况,即栈下溢出
    b = st->data[st->top--]; //先取栈顶元素,再使栈顶指针减1
    return true;
}

bool GetTop(SqStack* st, CSNode*&b) //取栈顶元素
{
    if (st->top == -1) return false; //栈空的情况,即栈下溢出
    b = st->data[st->top]; //取栈顶元素
    return true;
}

void DestroyStack(SqStack*& s) //销毁栈
{
    free(s);
}

void InitCSTree(CSTree t) //构造空树(初始化树)
{
    t = NULL;
}

void ClearCSTree(CSTree t) //清空树
{
    if (t)
    {
        if (t->firstchild) ClearCSTree(t->firstchild);
        if (t->nextsibling) ClearCSTree(t->nextsibling);
        free(t); //释放根结点
        t = NULL;
    }
}

void DestoryCSTree(CSTree t) //销毁树

    //此存储结构二叉树无法销毁 
}

bool EmptyCSTree(CSTree t) //判断树是否为空
{
    return t == NULL;
}

bool CreateCSTree(CSTree &t) //按先序序列构造树
{
    char ch;
    scanf("%c", &ch);
    if (ch == '#') t = NULL;
    else
    {
        t = (CSNode*)malloc(sizeof(CSNode));
        if (t == NULL) return false; //分配失败
        t->data = ch;
        CreateCSTree(t->firstchild);
        CreateCSTree(t->nextsibling);
    }
    return true;
}
void PreOrder(CSTree t) //前序遍历树
{
    if (t)
    {
        printf("%c ", t->data);
        PreOrder(t->firstchild);
        PreOrder(t->nextsibling);
    }
}

 int main()
{
    CSNode* t = NULL;
    InitCSTree(t);
    cout<<"请输入(孩子-兄弟)的元素!"<<endl;
    CreateCSTree(t);
    cout<<"先根遍历树"<<endl;
    PreOrder(t);
    cout<<endl;
    system("pause");
    return 0;
}

 

以上就是本人对最近学习C++数据结构与算法的心得体会,望大家支持! 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海哥的C++养成之旅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值