树的基本概念:
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
树结果的主要特点:
在最顶端的结点,称为根结点,根节点没有前驱结点,也是所有结点的祖先;
除根节点外,其余结点被分成X(X>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= X)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继结点;
需要注意的是:
1、所有的子树之间不能有交集;
如图所示:
2、除了根结点外,其他所有结点都是有且只有一个父结点;
3、一颗N个结点的树由N-1条边组成;
一些相关的基本概念:
节点的度:一个节点含有的子树的总个数称为该节点的度;
叶子节点或终端节点:度为0的节点称为叶子节点,也可以称为终端节点;
非终端节点或分支节点:除了根节点,其他所有度不为0的节点;
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的双亲节点或者父节点;
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的孩子节点或者子节点;
兄弟节点:具有相同父节点的节点互称为兄弟节点;
树的度:一棵树中,最大的节点的度称为树的度;
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或者深度:从根节点开始为第一层,一次往下,一直到最底层,有多少层,则树的深度就是多少;
节点的祖先:从根到该节点所经分支上的所有节点;
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。
1、
二叉树的概念:
度为2的树,一棵二叉树是结点的一个有限集合,该集合:为空
或者由一个根节点加上两棵别称为左子树和右子树的二叉树组成;
满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。
完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
二叉树的几条性质:
性质1:在一颗二叉树中,如果叶子结点的个数为n0,度为2的结点个数为n2,则有n0=n2+1;
性质2:二叉树的第i层上最多有2^(i-1) 个结点(i>=1);
性质3:在一颗深度为k的二叉树中,最多有2^k - 1个结点;
性质4:具有n个结点的完全二叉树的深度为k= log2(N+1);
性质5:对一颗具有n个结点的完全二叉树从1开始按层序编号,则对于编号为i(1<=i<=n)的结点,则有以下:
1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
2. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
3. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子
例题:
1、
2、
3、
4、
编程题:
1、已知(L,N),(G,K),(G,L),(G,M),(B,E),(B,F),(D,G),(D,H),(D,I),(D,J),(A,B),(A,C),(A,D)是表示一棵树中具有父子关系的边
(1)请画出树形表示图;
(2)树的根节点 A ;
(3)列出树的叶子点 N、K、M、E、F、H、C、I、J ;
(4)树的高度 5 ;
(5)节点D的度数 4 ;
(6)节点L的层数 4 ;
(7)节点G的兄弟 H、I、J ,祖先 A ,子孙 K,L,M,N 。
2、连起来的整颗树:
2、 编程实现:以孩子兄弟链表作存储结构,创建一棵树。并输出其先根遍历序列。
完整代码:
#include<iostream>
using namespace std;
typedef char ElemType;
#define MaxSize 15
typedef struct CSNode
{
ElemType data;
struct CSNode* firstchild, * nextsibling;
}CSNode, * CSTree;
typedef struct
{
CSNode* data[MaxSize]; //存放栈中的数据元素
int top; //存放栈顶指针
}SqStack; //顺序栈类型
void InitStack(SqStack*& s) //初始化栈
{
s = (SqStack*)malloc(sizeof(SqStack)); //分配一个顺序栈空间,首地址存放在s中
if (s == NULL) printf("内存分配不成功!\n");
s->top = -1; //栈顶指针置为-1
}
bool EmptyStack(SqStack* s) //判断栈是否为空
{
return s->top == -1;
}
bool Push(SqStack*& st, CSNode*b) //进栈
{
if (st->top == MaxSize - 1) return false; //栈满的情况,即栈上溢出
st->data[++st->top] = b; //栈顶指针先增1,再将元素放在栈顶指针处
return true;
}
bool Pop(SqStack*& st, CSNode*&b) //出栈
{
if (st->top == -1) return false; //栈空的情况,即栈下溢出
b = st->data[st->top--]; //先取栈顶元素,再使栈顶指针减1
return true;
}
bool GetTop(SqStack* st, CSNode*&b) //取栈顶元素
{
if (st->top == -1) return false; //栈空的情况,即栈下溢出
b = st->data[st->top]; //取栈顶元素
return true;
}
void DestroyStack(SqStack*& s) //销毁栈
{
free(s);
}
void InitCSTree(CSTree t) //构造空树(初始化树)
{
t = NULL;
}
void ClearCSTree(CSTree t) //清空树
{
if (t)
{
if (t->firstchild) ClearCSTree(t->firstchild);
if (t->nextsibling) ClearCSTree(t->nextsibling);
free(t); //释放根结点
t = NULL;
}
}
void DestoryCSTree(CSTree t) //销毁树
{
//此存储结构二叉树无法销毁
}
bool EmptyCSTree(CSTree t) //判断树是否为空
{
return t == NULL;
}
bool CreateCSTree(CSTree &t) //按先序序列构造树
{
char ch;
scanf("%c", &ch);
if (ch == '#') t = NULL;
else
{
t = (CSNode*)malloc(sizeof(CSNode));
if (t == NULL) return false; //分配失败
t->data = ch;
CreateCSTree(t->firstchild);
CreateCSTree(t->nextsibling);
}
return true;
}
void PreOrder(CSTree t) //前序遍历树
{
if (t)
{
printf("%c ", t->data);
PreOrder(t->firstchild);
PreOrder(t->nextsibling);
}
}
int main()
{
CSNode* t = NULL;
InitCSTree(t);
cout<<"请输入(孩子-兄弟)的元素!"<<endl;
CreateCSTree(t);
cout<<"先根遍历树"<<endl;
PreOrder(t);
cout<<endl;
system("pause");
return 0;
}
以上就是本人对最近学习C++数据结构与算法的心得体会,望大家支持!